Dipasquale Ottavia, Martins Daniel, Sethi Arjun, Veronese Mattia, Hesse Swen, Rullmann Michael, Sabri Osama, Turkheimer Federico, Harrison Neil A, Mehta Mitul A, Cercignani Mara
Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Neuropsychopharmacology. 2020 Aug;45(9):1482-1489. doi: 10.1038/s41386-020-0724-x. Epub 2020 May 30.
Functional magnetic resonance imaging (fMRI) can be combined with drugs to investigate the system-level functional responses in the brain to such challenges. However, most psychoactive agents act on multiple neurotransmitters, limiting the ability of fMRI to identify functional effects related to actions on discrete pharmacological targets. We recently introduced a multimodal approach, REACT (Receptor-Enriched Analysis of functional Connectivity by Targets), which offers the opportunity to disentangle effects of drugs on different neurotransmitters and clarify the biological mechanisms driving clinical efficacy and side effects of a compound. Here, we focus on methylphenidate (MPH), which binds to the dopamine transporter (DAT) and the norepinephrine transporter (NET), to unravel its effects on dopaminergic and noradrenergic functional circuits in the healthy brain at rest. We then explored the relationship between these target-enriched resting state functional connectivity (FC) maps and inter-individual variability in behavioural responses to a reinforcement-learning task encompassing a novelty manipulation to disentangle the molecular systems underlying specific cognitive/behavioural effects. Our main analysis showed a significant MPH-induced FC increase in sensorimotor areas in the functional circuit associated with DAT. In our exploratory analysis, we found that MPH-induced regional variations in the DAT and NET-enriched FC maps were significantly correlated with some of the inter-individual differences on key behavioural responses associated with the reinforcement-learning task. Our findings show that main MPH-related FC changes at rest can be understood through the distribution of DAT in the brain. Furthermore, they suggest that when compounds have mixed pharmacological profiles, REACT may be able to capture regional functional effects that are underpinned by the same cognitive mechanism but are related to engagement of distinct molecular targets.
功能磁共振成像(fMRI)可与药物相结合,以研究大脑对这类挑战的系统水平功能反应。然而,大多数精神活性药物作用于多种神经递质,限制了fMRI识别与离散药理学靶点作用相关的功能效应的能力。我们最近引入了一种多模态方法,即REACT(基于靶点的功能连接受体富集分析),它提供了区分药物对不同神经递质的作用并阐明驱动化合物临床疗效和副作用的生物学机制的机会。在这里,我们聚焦于哌醋甲酯(MPH),它与多巴胺转运体(DAT)和去甲肾上腺素转运体(NET)结合,以揭示其在健康大脑静息状态下对多巴胺能和去甲肾上腺素能功能回路的影响。然后,我们探究了这些靶点富集的静息态功能连接(FC)图谱与对包含新颖性操作的强化学习任务的行为反应中的个体间变异性之间的关系,以厘清特定认知/行为效应背后的分子系统。我们的主要分析表明,MPH诱导与DAT相关的功能回路中感觉运动区域的FC显著增加。在我们的探索性分析中,我们发现MPH诱导的DAT和NET富集的FC图谱中的区域变化与强化学习任务相关的关键行为反应中的一些个体间差异显著相关。我们的研究结果表明,静息状态下与MPH相关的主要FC变化可以通过DAT在大脑中的分布来理解。此外,这些结果表明,当化合物具有混合药理学特征时,REACT可能能够捕捉到由相同认知机制支持但与不同分子靶点参与相关的区域功能效应。