Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian School of Software, Dalian University of Technology, Dalian, 116620, China.
Neural Netw. 2020 Sep;129:19-30. doi: 10.1016/j.neunet.2020.05.021. Epub 2020 May 22.
Most multi-view clustering algorithms apply to data with complete instances and clusters in the views. Recently, multi-view clustering on data with partial instances has been studied. In this paper, we study the more general version of the problem, i.e., multi-view clustering on data with partial instances and clusters in the views. We propose a non-negative matrix factorization (NMF) based algorithm. For the special case with partial instances, it introduces an instance-view-indicator matrix to indicate whether an instance exists in a view. Then, it maps the instances representing the same object to the same vector, and maps the instances representing different objects to different vectors. For the general case with partial instances and clusters, it further introduces a cluster-view-indicator matrix to indicate whether a cluster exists in a view. In each view, it also maps the instances representing the same object to the same vector, but it further makes the elements of the vector 0 if the elements correspond to missing clusters. Then it minimizes the disagreements between the approximated indicator vectors of instances representing the same object. Experimental results show that the proposed algorithm performs well on data with partial instances and clusters, and outperforms existing algorithms on data with partial instances.
大多数多视图聚类算法适用于视图中具有完整实例和聚类的数据。最近,已经研究了具有部分实例的数据的多视图聚类。在本文中,我们研究了更一般的版本的问题,即在视图中具有部分实例和聚类的数据的多视图聚类。我们提出了一种基于非负矩阵分解(NMF)的算法。对于具有部分实例的特殊情况,它引入了一个实例-视图指示矩阵来指示实例是否存在于视图中。然后,它将表示同一对象的实例映射到同一向量,将表示不同对象的实例映射到不同的向量。对于具有部分实例和聚类的一般情况,它进一步引入了一个聚类-视图指示矩阵来指示聚类是否存在于视图中。在每个视图中,它还将表示同一对象的实例映射到同一向量,但如果元素对应于缺失的聚类,则使向量的元素为 0。然后,它最小化表示同一对象的实例的近似指示向量之间的差异。实验结果表明,所提出的算法在具有部分实例和聚类的数据上表现良好,并且在具有部分实例的数据上优于现有算法。