Suppr超能文献

口腔和肠道细菌外毒素:与致癌作用的潜在关联。

Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis.

机构信息

Wayne State University School of Medicine, Detroit, MI, United States.

Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States.

出版信息

Prog Mol Biol Transl Sci. 2020;171:131-193. doi: 10.1016/bs.pmbts.2020.02.004. Epub 2020 Apr 9.

Abstract

Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and β-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.

摘要

越来越多的证据表明,常驻微生物(失调)的失衡会促进慢性炎症、免疫抑制和致癌代谢物的产生,从而导致肿瘤发生。然而,支持个别细菌物种与人类散发性癌症之间存在直接联系的证据仍然有限。本章重点介绍了几种新兴的细菌毒素,这些毒素最近因其对人类口腔消化道癌症的潜在致癌特性而被描述出来,并且在人类组织样本中已经发现了这些毒素的存在。其中包括各种γ和ε变形菌产生的细胞毒性扩张毒素、哺乳动物口腔密螺旋体的 Dentilisin、多杀巴斯德菌毒素、两种梭杆菌毒素 FadA 和 Fap2、脆弱拟杆菌毒素、colibactin、细胞毒性坏死因子和大肠杆菌的α-溶血素以及沙门氏菌 AvrA。很明显,这些细菌毒素具有诱导癌症的几个特征的生物学活性。一些毒素直接与 DNA 或染色体相互作用,导致其分解,导致突变和基因组不稳定,而另一些则调节细胞增殖、复制和死亡,并促进免疫逃逸和肿瘤侵袭,撬动特定的癌基因和肿瘤抑制途径,如 p53 和 β-连环蛋白/Wnt。此外,大多数细菌毒素通过复杂多样的机制控制肿瘤促进炎症。尽管越来越多的实验室证据支持选定的细菌毒素具有致癌潜力,但我们需要更多来自人类研究的直接证据和来自生理相关实验动物模型的机制数据,这些数据可以反映体内慢性感染,并考虑微生物组中细菌-细菌的相互作用。

相似文献

1
Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis.
Prog Mol Biol Transl Sci. 2020;171:131-193. doi: 10.1016/bs.pmbts.2020.02.004. Epub 2020 Apr 9.
3
Microbiota Effects on Carcinogenesis: Initiation, Promotion, and Progression.
Annu Rev Med. 2021 Jan 27;72:243-261. doi: 10.1146/annurev-med-080719-091604. Epub 2020 Oct 14.
4
Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer.
Nat Rev Microbiol. 2017 Feb;15(2):109-128. doi: 10.1038/nrmicro.2016.171. Epub 2017 Jan 3.
5
Gut microbiota imbalance and colorectal cancer.
World J Gastroenterol. 2016 Jan 14;22(2):501-18. doi: 10.3748/wjg.v22.i2.501.
6
Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology.
Biomolecules. 2015 Aug 11;5(3):1762-82. doi: 10.3390/biom5031762.
7
Gut Microbiota and Colon Cancer: A Role for Bacterial Protein Toxins?
Int J Mol Sci. 2020 Aug 27;21(17):6201. doi: 10.3390/ijms21176201.
9
The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0008-2014.
10
Bacterial protein toxins in human cancers.
Pathog Dis. 2016 Feb;74(1):ftv105. doi: 10.1093/femspd/ftv105. Epub 2015 Nov 3.

引用本文的文献

1
New advances in oral microbiology and tumor research.
World J Clin Oncol. 2025 Jul 24;16(7):106981. doi: 10.5306/wjco.v16.i7.106981.
2
Novel Approaches for Treatment of Intraoral Microbial Infections.
J Dent Res. 2025 Jun;104(6):584-593. doi: 10.1177/00220345251317494. Epub 2025 Mar 12.
3
Microbial molecules, metabolites, and malignancy.
Neoplasia. 2025 Feb;60:101128. doi: 10.1016/j.neo.2025.101128. Epub 2025 Jan 18.
4
Microbiome Differences in Colorectal Cancer Patients and Healthy Individuals: Implications for Vaccine Antigen Discovery.
Immunotargets Ther. 2024 Dec 13;13:749-774. doi: 10.2147/ITT.S486731. eCollection 2024.
6
Bacterial, Viral and Parasitic Pathogens and Colorectal Cancer.
Cancers (Basel). 2023 Jun 26;15(13):3353. doi: 10.3390/cancers15133353.
7
Seasonal Dynamics of the Upper Respiratory Tract Microbiome in Chronic Obstructive Pulmonary Disease.
Int J Chron Obstruct Pulmon Dis. 2023 Jun 20;18:1267-1276. doi: 10.2147/COPD.S403198. eCollection 2023.
8
Fusobacterium nucleatum Pyogenic Liver Abscess and the Role of Bacterial Virulence and Gut Microbiota Dysbiosis.
Cureus. 2023 Feb 2;15(2):e34548. doi: 10.7759/cureus.34548. eCollection 2023 Feb.
9
Pasteurella multocida toxin - lessons learned from a mitogenic toxin.
Front Immunol. 2022 Dec 16;13:1058905. doi: 10.3389/fimmu.2022.1058905. eCollection 2022.

本文引用的文献

1
Pivotal Role of Mitochondria in Macrophage Response to Bacterial Pathogens.
Front Immunol. 2019 Oct 23;10:2461. doi: 10.3389/fimmu.2019.02461. eCollection 2019.
2
Bacterial Manipulation of Wnt Signaling: A Host-Pathogen Tug-of-Wnt.
Front Immunol. 2019 Oct 17;10:2390. doi: 10.3389/fimmu.2019.02390. eCollection 2019.
3
Wnt/β-Catenin Signaling as a Molecular Target by Pathogenic Bacteria.
Front Immunol. 2019 Sep 27;10:2135. doi: 10.3389/fimmu.2019.02135. eCollection 2019.
4
Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.
Nat Chem. 2019 Oct;11(10):880-889. doi: 10.1038/s41557-019-0317-7. Epub 2019 Sep 16.
5
Antibody Responses to Proteins in Prediagnostic Blood Samples are not Associated with Risk of Developing Colorectal Cancer.
Cancer Epidemiol Biomarkers Prev. 2019 Sep;28(9):1552-1555. doi: 10.1158/1055-9965.EPI-19-0313.
6
Structure elucidation of colibactin and its DNA cross-links.
Science. 2019 Sep 6;365(6457). doi: 10.1126/science.aax2685. Epub 2019 Aug 8.
7
Epigenetic Changes Induced by Toxin.
Infect Immun. 2019 May 21;87(6). doi: 10.1128/IAI.00447-18. Print 2019 Jun.
9
promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1.
EMBO Rep. 2019 Apr;20(4). doi: 10.15252/embr.201847638. Epub 2019 Mar 4.
10
The human gut bacterial genotoxin colibactin alkylates DNA.
Science. 2019 Feb 15;363(6428). doi: 10.1126/science.aar7785.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验