Suppr超能文献

用于牙科应用的 3D 打印钛合金的力学和生物学性能。

Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications.

机构信息

Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of oral and maxillofacial surgery, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.

出版信息

Dent Mater. 2020 Jul;36(7):945-958. doi: 10.1016/j.dental.2020.04.027. Epub 2020 May 29.

Abstract

OBJECTIVE

Titanium and its alloys are widely used for dental and medical biomaterials due to their excellent mechanical and biological advantages. After the introduction of direct laser metal sintering (DLMS) 3D printing technology and its use over conventional machine-cut processes, questions remain regarding whether 3D-printed titanium (alloy) devices have similar biological properties to machine-cut counterparts for dental applications. Thus, this work focuses on comparing the biological activities of machine-cut and 3D-printed specimens after optimizing the DLMS 3D-printing conditions in terms of the mechanophysical characteristics.

METHODS

The DLMS 3D-printing (as a function of the laser spacing from 30-100μm) and post-surface treatment (as-given or sand-blasted) conditions were optimized using medical-grade Ti-6Al-4V powders in terms of the inner pore amount, mechanical properties, roughness and hydrophilicity. Then, the initial cell adhesion of the optimized DLMS 3D-printed Ti-6Al-4V specimen was compared with that of the machine-cut Ti-6Al-4V specimen against human dermal fibroblasts (hDFs) and mesenchymal stem cells (hMSCs), which are representative of direct-contact cell types of orofacial mucosa and bone, respectively. hMSC differentiation on the specimens was conducted for up to 21 days to measure the osteogenic gene expression and biomineralization.

RESULTS

Laser spacings of 30-40μm had fewer inner defects and consequently a higher three-point flexural strength and elastic modulus compared to other larger laser spacings. Depending on the span width (0.3-1mm) in the lattice architecture, the elastic modulus of the 3D-printed cuboid specimen can be further controlled (up to ∼30 times). The sand-blasted specimens after 3D printing revealed lower surface roughness and higher hydrophilicity compared to the as-3D printed specimen, which were considered optimal conditions for biological study. Initial hDF and hMSC adhesion for 12 hr and hMSC differentiation on the surface were comparable between the sand-blasted 3D-printed and machine-cut specimens in terms of adherent cell numbers, vinculin intensity, osteogenic gene expression and biomineralization.

SIGNIFICANCE

The optimized DLMS 3D-printed Ti-6Al-4V specimen had similar biological properties to those of the machine-cut counterpart, suggesting the potential usefulness of 3D printing technology for a wide range of dental applications.

摘要

目的

由于钛及其合金具有优异的机械和生物学优势,因此被广泛用于牙科和医学生物材料。在引入直接激光金属烧结(DLMS)3D 打印技术并采用传统机械切割工艺之后,人们仍然对 3D 打印钛(合金)设备是否具有与牙科应用的机械切割对应物相似的生物学特性存在疑问。因此,本工作重点比较了优化 DLMS 3D 打印条件(激光间距为 30-100μm)后的机械切割和 3D 打印样品的生物学活性,这些条件是基于机械物理特性来确定的。

方法

使用医用级 Ti-6Al-4V 粉末,针对内孔数量、力学性能、粗糙度和润湿性,优化了 DLMS 3D 打印(作为激光间距为 30-100μm 的函数)和表面后处理(原样或喷砂)条件。然后,将优化后的 DLMS 3D 打印 Ti-6Al-4V 标本与机械切割 Ti-6Al-4V 标本的初始细胞黏附性进行比较,这两种标本分别代表口腔黏膜和骨的直接接触细胞类型的人皮肤成纤维细胞(hDFs)和间充质干细胞(hMSCs)。对标本进行长达 21 天的 hMSC 分化,以测量成骨基因表达和生物矿化。

结果

与其他较大的激光间距相比,激光间距为 30-40μm 的样品具有较少的内部缺陷,因此具有更高的三点弯曲强度和弹性模量。根据晶格结构中的跨度宽度(0.3-1mm),3D 打印的立方体形试样的弹性模量可以进一步控制(高达约 30 倍)。与原样 3D 打印相比,3D 打印后的喷砂试样具有较低的表面粗糙度和较高的润湿性,这被认为是生物研究的最佳条件。在 12 小时的初始 hDF 和 hMSC 黏附和 hMSC 在表面的分化方面,喷砂 3D 打印和机械切割标本之间的黏附细胞数量、 vinculin 强度、成骨基因表达和生物矿化方面相似。

意义

优化后的 DLMS 3D 打印 Ti-6Al-4V 标本具有与机械切割对应物相似的生物学特性,这表明 3D 打印技术在广泛的牙科应用中具有潜在的用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验