Suppr超能文献

使用全卷积神经网络对磁共振图像中的子宫和胎盘进行分割。

Segmentation of uterus and placenta in MR images using a fully convolutional neural network.

作者信息

Shahedi Maysam, Dormer James D, T T Anusha Devi, Do Quyen N, Xi Yin, Lewis Matthew A, Madhuranthakam Ananth J, Twickler Diane M, Fei Baowei

机构信息

Department of Bioengineering, The University of Texas at Dallas, TX.

Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Feb;11314. doi: 10.1117/12.2549873. Epub 2020 Mar 16.

Abstract

Segmentation of the uterine cavity and placenta in fetal magnetic resonance (MR) imaging is useful for the detection of abnormalities that affect maternal and fetal health. In this study, we used a fully convolutional neural network for 3D segmentation of the uterine cavity and placenta while a minimal operator interaction was incorporated for training and testing the network. The user interaction guided the network to localize the placenta more accurately. We trained the network with 70 training and 10 validation MRI cases and evaluated the algorithm segmentation performance using 20 cases. The average Dice similarity coefficient was 92% and 82% for the uterine cavity and placenta, respectively. The algorithm could estimate the volume of the uterine cavity and placenta with average errors of 2% and 9%, respectively. The results demonstrate that the deep learning-based segmentation and volume estimation is possible and can potentially be useful for clinical applications of human placental imaging.

摘要

胎儿磁共振成像中子宫腔和胎盘的分割对于检测影响母婴健康的异常情况很有用。在本研究中,我们使用全卷积神经网络对子宫腔和胎盘进行三维分割,同时在训练和测试网络时加入了最少的操作员交互。用户交互引导网络更准确地定位胎盘。我们用70个训练和10个验证MRI病例训练网络,并使用20个病例评估算法的分割性能。子宫腔和胎盘的平均骰子相似系数分别为92%和82%。该算法可以估计子宫腔和胎盘的体积,平均误差分别为2%和9%。结果表明,基于深度学习的分割和体积估计是可行的,并且可能对人类胎盘成像的临床应用有用。

相似文献

2
Deep learning-based segmentation of the placenta and uterus on MR images.基于深度学习的磁共振图像上胎盘和子宫分割
J Med Imaging (Bellingham). 2021 Sep;8(5):054001. doi: 10.1117/1.JMI.8.5.054001. Epub 2021 Sep 25.
9
Automatic segmentation of the uterus on MRI using a convolutional neural network.基于卷积神经网络的 MRI 子宫自动分割。
Comput Biol Med. 2019 Nov;114:103438. doi: 10.1016/j.compbiomed.2019.103438. Epub 2019 Sep 5.

引用本文的文献

10
SPIE Computer-Aided Diagnosis conference anniversary review.国际光学工程学会计算机辅助诊断会议周年回顾
J Med Imaging (Bellingham). 2022 Feb;9(Suppl 1):012208. doi: 10.1117/1.JMI.9.S1.012208. Epub 2022 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验