Suppr超能文献

基于深度学习的磁共振图像子宫腔和胎盘自动分割

Automatic Segmentation of Uterine Cavity and Placenta on MR Images Using Deep Learning.

作者信息

Shahedi Maysam, Dormer James D, Do Quyen N, Xi Yin, Lewis Matthew A, Herrera Christina L, Spong Catherine Y, Madhuranthakam Ananth J, Twickler Diane M, Fei Baowei

机构信息

Department of Bioengineering, The University of Texas at Dallas, TX.

Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12036. doi: 10.1117/12.2613286. Epub 2022 Apr 4.

Abstract

Magnetic resonance imaging (MRI) is useful for the detection of abnormalities affecting maternal and fetal health. In this study, we used a fully convolutional neural network for simultaneous segmentation of the uterine cavity and placenta on MR images. We trained the network with MR images of 181 patients, with 157 for training and 24 for validation. The segmentation performance of the algorithm was evaluated using MR images of 60 additional patients that were not involved in training. The average Dice similarity coefficients achieved for the uterine cavity and placenta were 92% and 80%, respectively. The algorithm could estimate the volume of the uterine cavity and placenta with average errors of less than 1.1% compared to manual estimations. Automated segmentation, when incorporated into clinical use, has the potential to quantify, standardize, and improve placental assessment, resulting in improved outcomes for mothers and fetuses.

摘要

磁共振成像(MRI)有助于检测影响母婴健康的异常情况。在本研究中,我们使用全卷积神经网络对磁共振图像上的子宫腔和胎盘进行同步分割。我们用181例患者的磁共振图像训练该网络,其中157例用于训练,24例用于验证。使用另外60例未参与训练的患者的磁共振图像评估该算法的分割性能。子宫腔和胎盘的平均骰子相似系数分别达到92%和80%。与手动估计相比,该算法估计子宫腔和胎盘体积的平均误差小于1.1%。自动分割技术应用于临床时,有可能对胎盘评估进行量化、标准化并加以改善,从而改善母婴结局。

相似文献

4
Deep learning-based segmentation of the placenta and uterus on MR images.基于深度学习的磁共振图像上胎盘和子宫分割
J Med Imaging (Bellingham). 2021 Sep;8(5):054001. doi: 10.1117/1.JMI.8.5.054001. Epub 2021 Sep 25.

本文引用的文献

1
Deep learning-based segmentation of the placenta and uterus on MR images.基于深度学习的磁共振图像上胎盘和子宫分割
J Med Imaging (Bellingham). 2021 Sep;8(5):054001. doi: 10.1117/1.JMI.8.5.054001. Epub 2021 Sep 25.
5
Automatic segmentation of the uterus on MRI using a convolutional neural network.基于卷积神经网络的 MRI 子宫自动分割。
Comput Biol Med. 2019 Nov;114:103438. doi: 10.1016/j.compbiomed.2019.103438. Epub 2019 Sep 5.
10
MRI of pregnancy-related issues: abnormal placentation.妊娠相关问题的 MRI:异常胎盘。
AJR Am J Roentgenol. 2012 Feb;198(2):311-20. doi: 10.2214/AJR.11.7957.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验