Suppr超能文献

基于深度学习的磁共振图像子宫腔和胎盘自动分割

Automatic Segmentation of Uterine Cavity and Placenta on MR Images Using Deep Learning.

作者信息

Shahedi Maysam, Dormer James D, Do Quyen N, Xi Yin, Lewis Matthew A, Herrera Christina L, Spong Catherine Y, Madhuranthakam Ananth J, Twickler Diane M, Fei Baowei

机构信息

Department of Bioengineering, The University of Texas at Dallas, TX.

Center for Imaging and Surgical Innovation, The University of Texas at Dallas, TX.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12036. doi: 10.1117/12.2613286. Epub 2022 Apr 4.

Abstract

Magnetic resonance imaging (MRI) is useful for the detection of abnormalities affecting maternal and fetal health. In this study, we used a fully convolutional neural network for simultaneous segmentation of the uterine cavity and placenta on MR images. We trained the network with MR images of 181 patients, with 157 for training and 24 for validation. The segmentation performance of the algorithm was evaluated using MR images of 60 additional patients that were not involved in training. The average Dice similarity coefficients achieved for the uterine cavity and placenta were 92% and 80%, respectively. The algorithm could estimate the volume of the uterine cavity and placenta with average errors of less than 1.1% compared to manual estimations. Automated segmentation, when incorporated into clinical use, has the potential to quantify, standardize, and improve placental assessment, resulting in improved outcomes for mothers and fetuses.

摘要

磁共振成像(MRI)有助于检测影响母婴健康的异常情况。在本研究中,我们使用全卷积神经网络对磁共振图像上的子宫腔和胎盘进行同步分割。我们用181例患者的磁共振图像训练该网络,其中157例用于训练,24例用于验证。使用另外60例未参与训练的患者的磁共振图像评估该算法的分割性能。子宫腔和胎盘的平均骰子相似系数分别达到92%和80%。与手动估计相比,该算法估计子宫腔和胎盘体积的平均误差小于1.1%。自动分割技术应用于临床时,有可能对胎盘评估进行量化、标准化并加以改善,从而改善母婴结局。

相似文献

1
Automatic Segmentation of Uterine Cavity and Placenta on MR Images Using Deep Learning.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12036. doi: 10.1117/12.2613286. Epub 2022 Apr 4.
2
Segmentation of uterus and placenta in MR images using a fully convolutional neural network.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11314. doi: 10.1117/12.2549873. Epub 2020 Mar 16.
3
Deep learning based automatic segmentation of the placenta and uterine cavity on prenatal MR images.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12465. doi: 10.1117/12.2653659. Epub 2023 Apr 7.
4
Deep learning-based segmentation of the placenta and uterus on MR images.
J Med Imaging (Bellingham). 2021 Sep;8(5):054001. doi: 10.1117/1.JMI.8.5.054001. Epub 2021 Sep 25.
5
Evaluation of Spatial Attentive Deep Learning for Automatic Placental Segmentation on Longitudinal MRI.
J Magn Reson Imaging. 2023 May;57(5):1533-1540. doi: 10.1002/jmri.28403. Epub 2022 Aug 16.
9
Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
Eur Radiol. 2020 Mar;30(3):1297-1305. doi: 10.1007/s00330-019-06467-3. Epub 2019 Nov 11.

引用本文的文献

1
Clinical Prospects for Artificial Intelligence in Obstetrics and Gynecology.
JMA J. 2025 Jan 15;8(1):113-120. doi: 10.31662/jmaj.2024-0197. Epub 2024 Dec 13.
3
Deep learning based automatic segmentation of the placenta and uterine cavity on prenatal MR images.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12465. doi: 10.1117/12.2653659. Epub 2023 Apr 7.

本文引用的文献

1
Deep learning-based segmentation of the placenta and uterus on MR images.
J Med Imaging (Bellingham). 2021 Sep;8(5):054001. doi: 10.1117/1.JMI.8.5.054001. Epub 2021 Sep 25.
2
Segmentation of uterus and placenta in MR images using a fully convolutional neural network.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11314. doi: 10.1117/12.2549873. Epub 2020 Mar 16.
3
Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation.
Med Image Anal. 2020 Jul;63:101693. doi: 10.1016/j.media.2020.101693. Epub 2020 Apr 3.
4
Placenta Accreta Spectrum: Correlation of MRI Parameters With Pathologic and Surgical Outcomes of High-Risk Pregnancies.
AJR Am J Roentgenol. 2020 Jun;214(6):1417-1423. doi: 10.2214/AJR.19.21705. Epub 2020 Mar 24.
5
Automatic segmentation of the uterus on MRI using a convolutional neural network.
Comput Biol Med. 2019 Nov;114:103438. doi: 10.1016/j.compbiomed.2019.103438. Epub 2019 Sep 5.
6
MRI of the Placenta Accreta Spectrum (PAS) Disorder: Radiomics Analysis Correlates With Surgical and Pathological Outcome.
J Magn Reson Imaging. 2020 Mar;51(3):936-946. doi: 10.1002/jmri.26883. Epub 2019 Aug 9.
7
Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges.
J Digit Imaging. 2019 Aug;32(4):582-596. doi: 10.1007/s10278-019-00227-x.
8
In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome.
J Magn Reson Imaging. 2018 Feb;47(2):449-458. doi: 10.1002/jmri.25806. Epub 2017 Jul 22.
9
Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views.
Med Image Anal. 2016 Dec;34:137-147. doi: 10.1016/j.media.2016.04.009. Epub 2016 May 3.
10
MRI of pregnancy-related issues: abnormal placentation.
AJR Am J Roentgenol. 2012 Feb;198(2):311-20. doi: 10.2214/AJR.11.7957.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验