Suppr超能文献

使用广义线性模型表征视网膜神经节细胞对电刺激的反应

Characterizing Retinal Ganglion Cell Responses to Electrical Stimulation Using Generalized Linear Models.

作者信息

Sekhar Sudarshan, Ramesh Poornima, Bassetto Giacomo, Zrenner Eberhart, Macke Jakob H, Rathbun Daniel L

机构信息

Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany.

Graduate Training Center of Neuroscience, International Max Planck Research School, Tübingen, Germany.

出版信息

Front Neurosci. 2020 May 12;14:378. doi: 10.3389/fnins.2020.00378. eCollection 2020.

Abstract

The ability to preferentially stimulate different retinal pathways is an important area of research for improving visual prosthetics. Recent work has shown that different classes of retinal ganglion cells (RGCs) have distinct linear electrical input filters for low-amplitude white noise stimulation. The aim of this study is to provide a statistical framework for characterizing how RGCs respond to white-noise electrical stimulation. We used a nested family of Generalized Linear Models (GLMs) to partition neural responses into different components-progressively adding covariates to the GLM which captured non-stationarity in neural activity, a linear dependence on the stimulus, and any remaining non-linear interactions. We found that each of these components resulted in increased model performance, but that even the non-linear model left a substantial fraction of neural variability unexplained. The broad goal of this paper is to provide a much-needed theoretical framework to objectively quantify stimulus paradigms in terms of the types of neural responses that they elicit (linear vs. non-linear vs. stimulus-independent variability). In turn, this aids the prosthetic community in the search for optimal stimulus parameters that avoid indiscriminate retinal activation and adaptation caused by excessively large stimulus pulses, and avoid low fidelity responses (low signal-to-noise ratio) caused by excessively weak stimulus pulses.

摘要

优先刺激不同视网膜通路的能力是视觉假体改进研究的一个重要领域。最近的研究表明,不同类型的视网膜神经节细胞(RGC)对低幅度白噪声刺激具有不同的线性电输入滤波器。本研究的目的是提供一个统计框架,以描述RGC如何对白噪声电刺激作出反应。我们使用了一个嵌套的广义线性模型(GLM)族,将神经反应划分为不同的成分——逐步向GLM中添加协变量,这些协变量捕获神经活动中的非平稳性、对刺激的线性依赖性以及任何剩余的非线性相互作用。我们发现,这些成分中的每一个都提高了模型性能,但即使是非线性模型也无法解释很大一部分神经变异性。本文的广泛目标是提供一个急需的理论框架,以便根据所引发的神经反应类型(线性与非线性与刺激无关的变异性)客观地量化刺激范式。反过来,这有助于假体研究群体寻找最佳刺激参数,避免因过大的刺激脉冲导致的视网膜无差别激活和适应,以及避免因过弱的刺激脉冲导致的低保真反应(低信噪比)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b236/7235533/e1d4fcdaceb4/fnins-14-00378-g0001.jpg

相似文献

1
Characterizing Retinal Ganglion Cell Responses to Electrical Stimulation Using Generalized Linear Models.
Front Neurosci. 2020 May 12;14:378. doi: 10.3389/fnins.2020.00378. eCollection 2020.
2
Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells.
J Neural Eng. 2017 Apr;14(2):026004. doi: 10.1088/1741-2552/14/2/026004. Epub 2017 Feb 3.
3
In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation.
Exp Eye Res. 2006 Aug;83(2):247-54. doi: 10.1016/j.exer.2005.11.023. Epub 2006 Jun 5.
4
6
Accurate Representation of Light-intensity Information by the Neural Activities of Independently Firing Retinal Ganglion Cells.
Korean J Physiol Pharmacol. 2009 Jun;13(3):221-7. doi: 10.4196/kjpp.2009.13.3.221. Epub 2009 Jun 30.
7
Irregularly timed electrical pulses reduce adaptation of retinal ganglion cells.
J Neural Eng. 2018 Oct;15(5):056017. doi: 10.1088/1741-2552/aad46e. Epub 2018 Jul 19.
8
Prediction of cortical responses to simultaneous electrical stimulation of the retina.
J Neural Eng. 2017 Feb;14(1):016006. doi: 10.1088/1741-2560/14/1/016006. Epub 2016 Nov 30.
9
Retinal ganglion cell (RGC) responses to different voltage stimulation parameters in rd1 mouse retina.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6761-4. doi: 10.1109/IEMBS.2010.5625998.
10
Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons.
J Neural Eng. 2016 Aug;13(4):046004. doi: 10.1088/1741-2560/13/4/046004. Epub 2016 May 17.

引用本文的文献

1
Differences in the spatial fidelity of evoked and spontaneous signals in the degenerating retina.
Front Cell Neurosci. 2022 Nov 7;16:1040090. doi: 10.3389/fncel.2022.1040090. eCollection 2022.
2
Retinal Processing: Insights from Mathematical Modelling.
J Imaging. 2022 Jan 17;8(1):14. doi: 10.3390/jimaging8010014.
3
M1-Type, but Not M4-Type, Melanopsin Ganglion Cells Are Physiologically Tuned to the Central Circadian Clock.
Front Neurosci. 2021 May 6;15:652996. doi: 10.3389/fnins.2021.652996. eCollection 2021.

本文引用的文献

1
Spike-triggered average electrical stimuli as input filters for bionic vision-a perspective.
J Neural Eng. 2018 Dec;15(6):063002. doi: 10.1088/1741-2552/aae493. Epub 2018 Sep 27.
2
Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.
PLoS Comput Biol. 2018 Feb 12;14(2):e1005997. doi: 10.1371/journal.pcbi.1005997. eCollection 2018 Feb.
3
Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.
J Neurophysiol. 2018 Feb 1;119(2):389-400. doi: 10.1152/jn.00872.2016. Epub 2017 Oct 18.
4
5
Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons.
J Neural Eng. 2016 Aug;13(4):046004. doi: 10.1088/1741-2560/13/4/046004. Epub 2016 May 17.
6
Measuring the signal-to-noise ratio of a neuron.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7141-6. doi: 10.1073/pnas.1505545112. Epub 2015 May 20.
7
Subretinal Visual Implant Alpha IMS--Clinical trial interim report.
Vision Res. 2015 Jun;111(Pt B):149-60. doi: 10.1016/j.visres.2015.03.001. Epub 2015 Mar 23.
8
Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration.
Vision Res. 2015 Jun;111(Pt B):142-8. doi: 10.1016/j.visres.2014.09.007. Epub 2014 Sep 26.
9
Interim results from the international trial of Second Sight's visual prosthesis.
Ophthalmology. 2012 Apr;119(4):779-88. doi: 10.1016/j.ophtha.2011.09.028. Epub 2012 Jan 11.
10
Cell types, circuits, computation.
Curr Opin Neurobiol. 2011 Oct;21(5):664-71. doi: 10.1016/j.conb.2011.05.007. Epub 2011 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验