Sekhar Sudarshan, Ramesh Poornima, Bassetto Giacomo, Zrenner Eberhart, Macke Jakob H, Rathbun Daniel L
Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany.
Graduate Training Center of Neuroscience, International Max Planck Research School, Tübingen, Germany.
Front Neurosci. 2020 May 12;14:378. doi: 10.3389/fnins.2020.00378. eCollection 2020.
The ability to preferentially stimulate different retinal pathways is an important area of research for improving visual prosthetics. Recent work has shown that different classes of retinal ganglion cells (RGCs) have distinct linear electrical input filters for low-amplitude white noise stimulation. The aim of this study is to provide a statistical framework for characterizing how RGCs respond to white-noise electrical stimulation. We used a nested family of Generalized Linear Models (GLMs) to partition neural responses into different components-progressively adding covariates to the GLM which captured non-stationarity in neural activity, a linear dependence on the stimulus, and any remaining non-linear interactions. We found that each of these components resulted in increased model performance, but that even the non-linear model left a substantial fraction of neural variability unexplained. The broad goal of this paper is to provide a much-needed theoretical framework to objectively quantify stimulus paradigms in terms of the types of neural responses that they elicit (linear vs. non-linear vs. stimulus-independent variability). In turn, this aids the prosthetic community in the search for optimal stimulus parameters that avoid indiscriminate retinal activation and adaptation caused by excessively large stimulus pulses, and avoid low fidelity responses (low signal-to-noise ratio) caused by excessively weak stimulus pulses.
优先刺激不同视网膜通路的能力是视觉假体改进研究的一个重要领域。最近的研究表明,不同类型的视网膜神经节细胞(RGC)对低幅度白噪声刺激具有不同的线性电输入滤波器。本研究的目的是提供一个统计框架,以描述RGC如何对白噪声电刺激作出反应。我们使用了一个嵌套的广义线性模型(GLM)族,将神经反应划分为不同的成分——逐步向GLM中添加协变量,这些协变量捕获神经活动中的非平稳性、对刺激的线性依赖性以及任何剩余的非线性相互作用。我们发现,这些成分中的每一个都提高了模型性能,但即使是非线性模型也无法解释很大一部分神经变异性。本文的广泛目标是提供一个急需的理论框架,以便根据所引发的神经反应类型(线性与非线性与刺激无关的变异性)客观地量化刺激范式。反过来,这有助于假体研究群体寻找最佳刺激参数,避免因过大的刺激脉冲导致的视网膜无差别激活和适应,以及避免因过弱的刺激脉冲导致的低保真反应(低信噪比)。