Suppr超能文献

视网膜对网络介导的光电压刺激反应的时空特征

Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.

作者信息

Ho Elton, Smith Richard, Goetz Georges, Lei Xin, Galambos Ludwig, Kamins Theodore I, Harris James, Mathieson Keith, Palanker Daniel, Sher Alexander

机构信息

Hansen Experimental Physics Laboratory, Stanford University , Stanford, California.

Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, California.

出版信息

J Neurophysiol. 2018 Feb 1;119(2):389-400. doi: 10.1152/jn.00872.2016. Epub 2017 Oct 18.

Abstract

Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We demonstrate modulation of the retinal ganglion cells (RGC) activity using complex spatiotemporal stimuli delivered via subretinal photovoltaic implant at 20 Hz in healthy and in degenerate retina. RGCs exhibit fast and localized ON and OFF network-mediated responses, with antagonistic center-surround organization of their receptive fields.

摘要

视网膜下假体旨在通过对存活的视网膜内层神经元进行电激活,使因光感受器退化而失明的患者恢复视力。如今,此类植入物通过低频刺激传递视觉信息,导致视觉感知不连续。我们测量了视网膜对通过光伏视网膜下植入物和可见光以视频速率传递的复杂视觉刺激的反应。使用多电极阵列在离体的健康和退化大鼠视网膜中记录视网膜神经节细胞(RGC)的活动,我们根据对像素大小为70μm、帧率为20Hz的光伏二进制白噪声刺激的触发尖峰平均反应,估计了它们的时空特性。光伏感受野的平均大小为194±3μm(平均值±标准误),与视觉反应的大小(221±4μm)相似,但光伏刺激的反应潜伏期明显更短。视觉和光伏感受野都具有相反的中心-周边结构。在健康视网膜中,ON型RGC具有光伏OFF反应,反之亦然。这种反转与电脉冲使光感受器去极化一致,这与光照增加时光感受器的超极化相反,尽管不能排除其他机制。在退化视网膜中,观察到了ON型和OFF型光伏反应,但在没有视觉反应的情况下,尚不清楚它们对应于哪些功能性RGC类型。退化视网膜保持了感受野的拮抗中心-周边组织。这些通过带有局部返回电极的光伏像素对视网膜下刺激产生的快速且空间局部化的网络介导的ON型和OFF型反应,增强了提供更具功能性的假体视觉的可能性。新发现与值得注意的是,目前临床使用的视网膜假体难以以自然频率传递视觉信息,导致感知不连续。我们证明了在健康和退化视网膜中,通过视网膜下光伏植入物以20Hz传递复杂的时空刺激来调节视网膜神经节细胞(RGC)的活动。RGC表现出快速且局部化的网络介导的ON型和OFF型反应,其感受野具有拮抗的中心-周边组织。

相似文献

1
Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.
J Neurophysiol. 2018 Feb 1;119(2):389-400. doi: 10.1152/jn.00872.2016. Epub 2017 Oct 18.
2
Subretinal electrical stimulation reveals intact network activity in the blind mouse retina.
J Neurophysiol. 2016 Oct 1;116(4):1684-1693. doi: 10.1152/jn.01095.2015. Epub 2016 Jul 13.
3
Contrast Sensitivity With a Subretinal Prosthesis and Implications for Efficient Delivery of Visual Information.
Invest Ophthalmol Vis Sci. 2015 Nov;56(12):7186-94. doi: 10.1167/iovs.15-17566.
5
Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis.
J Neural Eng. 2015 Feb;12(1):016010. doi: 10.1088/1741-2560/12/1/016010. Epub 2014 Dec 11.
7
8
Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
Exp Eye Res. 2012 Jun;99:71-7. doi: 10.1016/j.exer.2012.03.016. Epub 2012 Apr 20.
10
Irregularly timed electrical pulses reduce adaptation of retinal ganglion cells.
J Neural Eng. 2018 Oct;15(5):056017. doi: 10.1088/1741-2552/aad46e. Epub 2018 Jul 19.

引用本文的文献

1
Enhancing prosthetic vision by upgrade of a subretinal photovoltaic implant in situ.
Nat Commun. 2025 Mar 22;16(1):2820. doi: 10.1038/s41467-025-58084-y.
2
3D electronic implants in subretinal space: Long-term follow-up in rodents.
Biomaterials. 2024 Dec;311:122674. doi: 10.1016/j.biomaterials.2024.122674. Epub 2024 Jun 17.
3
Prosthetic Visual Acuity with the PRIMA Subretinal Microchip in Patients with Atrophic Age-Related Macular Degeneration at 4 Years Follow-up.
Ophthalmol Sci. 2024 Mar 7;4(5):100510. doi: 10.1016/j.xops.2024.100510. eCollection 2024 Sep-Oct.
4
Asymmetric Activation of ON and OFF Pathways in the Degenerated Retina.
eNeuro. 2024 May 15;11(5). doi: 10.1523/ENEURO.0110-24.2024. Print 2024 May.
5
Enhancing Prosthetic Vision by Upgrade of a Subretinal Photovoltaic Implant in situ.
bioRxiv. 2024 Apr 19:2024.04.15.589465. doi: 10.1101/2024.04.15.589465.
7
Cellular migration into a subretinal honeycomb-shaped prosthesis for high-resolution prosthetic vision.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2307380120. doi: 10.1073/pnas.2307380120. Epub 2023 Oct 13.
8
Emerging trends in the development of flexible optrode arrays for electrophysiology.
APL Bioeng. 2023 Sep 7;7(3):031503. doi: 10.1063/5.0153753. eCollection 2023 Sep.
9
Electronic Retinal Prostheses.
Cold Spring Harb Perspect Med. 2023 Aug 1;13(8):a041525. doi: 10.1101/cshperspect.a041525.

本文引用的文献

1
2
Electronic approaches to restoration of sight.
Rep Prog Phys. 2016 Sep;79(9):096701. doi: 10.1088/0034-4885/79/9/096701. Epub 2016 Aug 9.
3
Subretinal electrical stimulation reveals intact network activity in the blind mouse retina.
J Neurophysiol. 2016 Oct 1;116(4):1684-1693. doi: 10.1152/jn.01095.2015. Epub 2016 Jul 13.
4
Retinal stimulation strategies to restore vision: Fundamentals and systems.
Prog Retin Eye Res. 2016 Jul;53:21-47. doi: 10.1016/j.preteyeres.2016.05.002. Epub 2016 May 26.
5
Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons.
J Neural Eng. 2016 Aug;13(4):046004. doi: 10.1088/1741-2560/13/4/046004. Epub 2016 May 17.
6
Retinal safety of near infrared radiation in photovoltaic restoration of sight.
Biomed Opt Express. 2015 Dec 4;7(1):13-21. doi: 10.1364/BOE.7.000013. eCollection 2016 Jan 1.
7
Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration.
Sci Transl Med. 2015 Dec 16;7(318):318ra203. doi: 10.1126/scitranslmed.aac4877.
8
Contrast Sensitivity With a Subretinal Prosthesis and Implications for Efficient Delivery of Visual Information.
Invest Ophthalmol Vis Sci. 2015 Nov;56(12):7186-94. doi: 10.1167/iovs.15-17566.
9
Development of Animal Models of Local Retinal Degeneration.
Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4644-52. doi: 10.1167/iovs.14-16011.
10
Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind.
Ophthalmology. 2015 Aug;122(8):1547-54. doi: 10.1016/j.ophtha.2015.04.032. Epub 2015 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验