Suppr超能文献

动脉动脉瘤的计算血流动力学建模:一篇小型综述。

Computational Hemodynamic Modeling of Arterial Aneurysms: A Mini-Review.

作者信息

Lipp Sarah N, Niedert Elizabeth E, Cebull Hannah L, Diorio Tyler C, Ma Jessica L, Rothenberger Sean M, Stevens Boster Kimberly A, Goergen Craig J

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.

School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States.

出版信息

Front Physiol. 2020 May 12;11:454. doi: 10.3389/fphys.2020.00454. eCollection 2020.

Abstract

Arterial aneurysms are pathological dilations of blood vessels, which can be of clinical concern due to thrombosis, dissection, or rupture. Aneurysms can form throughout the arterial system, including intracranial, thoracic, abdominal, visceral, peripheral, or coronary arteries. Currently, aneurysm diameter and expansion rates are the most commonly used metrics to assess rupture risk. Surgical or endovascular interventions are clinical treatment options, but are invasive and associated with risk for the patient. For aneurysms in locations where thrombosis is the primary concern, diameter is also used to determine the level of therapeutic anticoagulation, a treatment that increases the possibility of internal bleeding. Since simple diameter is often insufficient to reliably determine rupture and thrombosis risk, computational hemodynamic simulations are being developed to help assess when an intervention is warranted. Created from subject-specific data, computational models have the potential to be used to predict growth, dissection, rupture, and thrombus-formation risk based on hemodynamic parameters, including wall shear stress, oscillatory shear index, residence time, and anomalous blood flow patterns. Generally, endothelial damage and flow stagnation within aneurysms can lead to coagulation, inflammation, and the release of proteases, which alter extracellular matrix composition, increasing risk of rupture. In this review, we highlight recent work that investigates aneurysm geometry, model parameter assumptions, and other specific considerations that influence computational aneurysm simulations. By highlighting modeling validation and verification approaches, we hope to inspire future computational efforts aimed at improving our understanding of aneurysm pathology and treatment risk stratification.

摘要

动脉瘤是血管的病理性扩张,由于血栓形成、夹层分离或破裂,可能引发临床关注。动脉瘤可在整个动脉系统中形成,包括颅内、胸、腹、内脏、外周或冠状动脉。目前,动脉瘤直径和扩张率是评估破裂风险最常用的指标。外科手术或血管内介入是临床治疗选择,但具有侵入性且对患者有风险。对于以血栓形成为主要关注点的部位的动脉瘤,直径也用于确定治疗性抗凝的水平,而这种治疗会增加内出血的可能性。由于单纯的直径往往不足以可靠地确定破裂和血栓形成风险,因此正在开发计算流体动力学模拟,以帮助评估何时需要进行干预。基于特定个体数据创建的计算模型有潜力用于根据包括壁面剪应力、振荡剪应力指数、停留时间和异常血流模式在内的流体动力学参数来预测生长、夹层分离、破裂和血栓形成风险。一般来说,动脉瘤内的内皮损伤和血流停滞可导致凝血、炎症以及蛋白酶的释放,这些会改变细胞外基质组成,增加破裂风险。在本综述中,我们重点介绍了最近的研究工作,这些工作探讨了动脉瘤几何形状、模型参数假设以及影响动脉瘤计算模拟的其他具体因素。通过强调建模验证和验证方法,我们希望激发未来的计算研究工作,以增进我们对动脉瘤病理学和治疗风险分层的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1bc/7235429/7095f80e02ef/fphys-11-00454-g0001.jpg

相似文献

1
Computational Hemodynamic Modeling of Arterial Aneurysms: A Mini-Review.
Front Physiol. 2020 May 12;11:454. doi: 10.3389/fphys.2020.00454. eCollection 2020.
2
Hemodynamic simulation of abdominal aortic aneurysm on idealised models: Investigation of stress parameters during disease progression.
Comput Methods Programs Biomed. 2022 Jan;213:106508. doi: 10.1016/j.cmpb.2021.106508. Epub 2021 Nov 1.
3
Endovascular repair of abdominal aortic aneurysm: an evidence-based analysis.
Ont Health Technol Assess Ser. 2002;2(1):1-46. Epub 2002 Mar 1.
4
Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease.
Biomech Model Mechanobiol. 2014 Nov;13(6):1261-76. doi: 10.1007/s10237-014-0570-z. Epub 2014 Apr 11.
6
Hemodynamics and bio-mechanics of morphologically distinct saccular intracranial aneurysms at bifurcations: Idealised vs Patient-specific geometries.
Comput Methods Programs Biomed. 2022 Dec;227:107237. doi: 10.1016/j.cmpb.2022.107237. Epub 2022 Nov 9.

引用本文的文献

1
Hemodynamic predictors of rupture in abdominal aortic aneurysms: a case series using computational fluid dynamics.
Front Cardiovasc Med. 2025 Aug 18;12:1633938. doi: 10.3389/fcvm.2025.1633938. eCollection 2025.
3
New Trends of Personalized Medicine in the Management of Abdominal Aortic Aneurysm: A Review.
J Pers Med. 2024 Dec 10;14(12):1148. doi: 10.3390/jpm14121148.
4
Bioengineered human arterial equivalent and its applications from vascular graft to disease modeling.
iScience. 2024 Oct 19;27(11):111215. doi: 10.1016/j.isci.2024.111215. eCollection 2024 Nov 15.
5
Computational Fluid Dynamic Simulations of Cerebral Aneurysms.
Adv Exp Med Biol. 2024;1462:397-415. doi: 10.1007/978-3-031-64892-2_24.
6
Investigating the pathophysiology and evolution of internal carotid dissection: a fluid-structure interaction simulation study.
Front Neurol. 2024 Sep 30;15:1455989. doi: 10.3389/fneur.2024.1455989. eCollection 2024.
7
Modeling Dynamics of the Cardiovascular System Using Fluid-Structure Interaction Methods.
Biology (Basel). 2023 Jul 21;12(7):1026. doi: 10.3390/biology12071026.
8
Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2217744120. doi: 10.1073/pnas.2217744120. Epub 2023 Mar 29.
9
Differential hemodynamics between arteriovenous fistulas with or without intervention before successful use.
Front Cardiovasc Med. 2022 Nov 3;9:1001267. doi: 10.3389/fcvm.2022.1001267. eCollection 2022.
10
Impact of spatial and temporal stability of flow vortices on vascular endothelial cells.
Biomech Model Mechanobiol. 2023 Feb;22(1):71-83. doi: 10.1007/s10237-022-01632-y. Epub 2022 Oct 21.

本文引用的文献

1
Biomechanical prediction of abdominal aortic aneurysm rupture potential.
J Vasc Surg. 2020 Feb;71(2):627. doi: 10.1016/j.jvs.2019.03.052.
2
Sidewall Aneurysm Geometry as a Predictor of Rupture Risk Due to Associated Abnormal Hemodynamics.
Front Neurol. 2019 Aug 14;10:841. doi: 10.3389/fneur.2019.00841. eCollection 2019.
3
Accelerating cardiovascular model building with convolutional neural networks.
Med Biol Eng Comput. 2019 Oct;57(10):2319-2335. doi: 10.1007/s11517-019-02029-3. Epub 2019 Aug 24.
6
What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review.
J Cereb Blood Flow Metab. 2020 May;40(5):1021-1039. doi: 10.1177/0271678X19854640. Epub 2019 Jun 18.
7
Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-Phase Ib: Effect of morphology on hemodynamics.
PLoS One. 2019 May 17;14(5):e0216813. doi: 10.1371/journal.pone.0216813. eCollection 2019.
9
Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-phase II: rupture risk assessment.
Int J Comput Assist Radiol Surg. 2019 Oct;14(10):1795-1804. doi: 10.1007/s11548-019-01986-2. Epub 2019 May 3.
10
Morphology and Hemodynamics in Isolated Common Iliac Artery Aneurysms Impacts Proximal Aortic Remodeling.
Arterioscler Thromb Vasc Biol. 2019 Jun;39(6):1125-1136. doi: 10.1161/ATVBAHA.119.312687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验