Suppr超能文献

用于研究染色质的邻近标记技术

Proximity Labeling Techniques to Study Chromatin.

作者信息

Ummethum Henning, Hamperl Stephan

机构信息

Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany.

出版信息

Front Genet. 2020 May 12;11:450. doi: 10.3389/fgene.2020.00450. eCollection 2020.

Abstract

Mammals contain over 200 different cell types, yet nearly all have the same genomic DNA sequence. It is a key question in biology how the genetic instructions in DNA are selectively interpreted by cells to specify various transcriptional programs and therefore cellular identity. The structural and functional organization of chromatin governs the transcriptional state of individual genes. To understand how genomic loci adopt different levels of gene expression, it is critical to characterize all local chromatin factors as well as long-range interactions in the 3D nuclear compartment. Much of our current knowledge regarding protein interactions in a chromatin context is based on affinity purification of chromatin components coupled to mass spectrometry (AP-MS). AP-MS has been invaluable to map strong protein-protein interactions in the nucleus. However, the interaction is detected after cell lysis and biochemical enrichment, allowing for loss or gain of false positive or negative interaction partners. Recently, proximity-dependent labeling methods have emerged as powerful tools for studying chromatin in its native context. These methods take advantage of engineered enzymes that are fused to a chromatin factor of interest and can directly label all factors in proximity. Subsequent pull-down assays followed by mass spectrometry or sequencing approaches provide a comprehensive snapshot of the proximal chromatin interactome. By combining this method with dCas9, this approach can also be extended to study chromatin at specific genomic loci. Here, we review and compare current proximity-labeling approaches available for studying chromatin, with a particular focus on new emerging technologies that can provide important insights into the transcriptional and chromatin interaction networks essential for cellular identity.

摘要

哺乳动物包含200多种不同的细胞类型,但几乎所有细胞都具有相同的基因组DNA序列。DNA中的遗传指令如何被细胞选择性解读以指定各种转录程序,进而决定细胞身份,这是生物学中的一个关键问题。染色质的结构和功能组织决定了单个基因的转录状态。为了理解基因组位点如何呈现不同水平的基因表达,关键是要表征所有局部染色质因子以及三维核区室中的长程相互作用。我们目前关于染色质环境中蛋白质相互作用的许多知识都基于与质谱联用的染色质成分亲和纯化(AP-MS)。AP-MS对于绘制细胞核中强大的蛋白质-蛋白质相互作用图谱非常有价值。然而,这种相互作用是在细胞裂解和生化富集后检测到的,可能会导致假阳性或假阴性相互作用伙伴的丢失或增加。最近,基于邻近标记的方法已成为在天然环境中研究染色质的强大工具。这些方法利用与感兴趣的染色质因子融合的工程酶,能够直接标记附近的所有因子。随后通过质谱或测序方法进行的下拉分析提供了近端染色质相互作用组的全面概况。通过将这种方法与dCas9相结合,该方法还可以扩展到研究特定基因组位点的染色质。在这里,我们综述并比较了目前可用于研究染色质的基于邻近标记的方法,特别关注那些能够为细胞身份所必需的转录和染色质相互作用网络提供重要见解的新兴技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a4c/7235407/2e42d8e4bb71/fgene-11-00450-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验