Harris Daniel R, Henderson Darren W, Corbeau Alexandria
Institute for Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506.
Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY 40506.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:221-230. eCollection 2020.
We present sig2db as an open-source solution for clinical data warehouses desiring to process natural language from prescription instructions, often referred to as "sigs". In electronic prescribing, the sig is typically an unstructured text field intended to capture all requirements for medication administration. The sig captures certain fields that the structured data may lack such as days supply, time of day, or meal-time considerations. Our open-source software package facilitates the workflow needed to process sigs into a structured format usable by clinical data warehouses. Our solution focuses on extracting concepts from prescriptions in order to understand the intended semantics by leveraging known natural language processing tools. We demonstrate the utility of concept extraction from sigs and present our findings in processing 1023 unique sigs from 5.7 million unique prescriptions.
我们提出了sig2db,这是一种开源解决方案,适用于希望处理来自处方说明(通常称为“sigs”)的自然语言的临床数据仓库。在电子处方中,sig通常是一个非结构化文本字段,旨在捕获药物给药的所有要求。sig捕获了结构化数据可能缺少的某些字段,如供应天数、一天中的时间或用餐时间考虑因素。我们的开源软件包促进了将sigs处理成临床数据仓库可用的结构化格式所需的工作流程。我们的解决方案专注于从处方中提取概念,以便通过利用已知的自然语言处理工具来理解预期的语义。我们展示了从sigs中提取概念的效用,并展示了我们处理来自570万份独特处方的1023个独特sigs的结果。