Suppr超能文献

基于集成方法的临床文本中药物及相关信息的提取。

Ensemble method-based extraction of medication and related information from clinical texts.

机构信息

Biomedical Informatics Center, Medical University of South Carolina, Charleston, South Carolina, USA.

出版信息

J Am Med Inform Assoc. 2020 Jan 1;27(1):31-38. doi: 10.1093/jamia/ocz100.

Abstract

OBJECTIVE

Accurate and complete information about medications and related information is crucial for effective clinical decision support and precise health care. Recognition and reduction of adverse drug events is also central to effective patient care. The goal of this research is the development of a natural language processing (NLP) system to automatically extract medication and adverse drug event information from electronic health records. This effort was part of the 2018 n2c2 shared task on adverse drug events and medication extraction.

MATERIALS AND METHODS

The new NLP system implements a stacked generalization based on a search-based structured prediction algorithm for concept extraction. We trained 4 sequential classifiers using a variety of structured learning algorithms. To enhance accuracy, we created a stacked ensemble consisting of these concept extraction models trained on the shared task training data. We implemented a support vector machine model to identify related concepts.

RESULTS

Experiments with the official test set showed that our stacked ensemble achieved an F1 score of 92.66%. The relation extraction model with given concepts reached a 93.59% F1 score. Our end-to-end system yielded overall micro-averaged recall, precision, and F1 score of 92.52%, 81.88% and 86.88%, respectively. Our NLP system for adverse drug events and medication extraction ranked within the top 5 of teams participating in the challenge.

CONCLUSION

This study demonstrated that a stacked ensemble with a search-based structured prediction algorithm achieved good performance by effectively integrating the output of individual classifiers and could provide a valid solution for other clinical concept extraction tasks.

摘要

目的

准确、完整的药物及相关信息对于有效的临床决策支持和精准的医疗保健至关重要。识别和减少药物不良事件也是有效患者护理的核心。本研究的目标是开发一种自然语言处理(NLP)系统,以自动从电子健康记录中提取药物和药物不良事件信息。这项工作是 2018 年 n2c2 药物不良事件和药物提取共享任务的一部分。

材料与方法

新的 NLP 系统实现了基于搜索的结构化预测算法的堆叠泛化,用于概念提取。我们使用各种结构化学习算法训练了 4 个顺序分类器。为了提高准确性,我们创建了一个堆叠集成,由在共享任务训练数据上训练的这些概念提取模型组成。我们实现了一个支持向量机模型来识别相关概念。

结果

在官方测试集上的实验表明,我们的堆叠集成达到了 92.66%的 F1 得分。给定概念的关系提取模型达到了 93.59%的 F1 得分。我们的端到端系统的总体微平均召回率、精度和 F1 得分为 92.52%、81.88%和 86.88%。我们的药物不良事件和药物提取 NLP 系统在参与挑战的团队中排名前 5。

结论

这项研究表明,基于搜索的结构化预测算法的堆叠集成通过有效整合各个分类器的输出,取得了良好的性能,可以为其他临床概念提取任务提供有效的解决方案。

相似文献

1
Ensemble method-based extraction of medication and related information from clinical texts.
J Am Med Inform Assoc. 2020 Jan 1;27(1):31-38. doi: 10.1093/jamia/ocz100.
2
A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
J Am Med Inform Assoc. 2020 Jan 1;27(1):13-21. doi: 10.1093/jamia/ocz063.
5
2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records.
J Am Med Inform Assoc. 2020 Jan 1;27(1):3-12. doi: 10.1093/jamia/ocz166.
7
An ensemble of neural models for nested adverse drug events and medication extraction with subwords.
J Am Med Inform Assoc. 2020 Jan 1;27(1):22-30. doi: 10.1093/jamia/ocz075.
10
Recognition of medication information from discharge summaries using ensembles of classifiers.
BMC Med Inform Decis Mak. 2012 May 7;12:36. doi: 10.1186/1472-6947-12-36.

引用本文的文献

1
Do LLMs Surpass Encoders for Biomedical NER?
Proc (IEEE Int Conf Healthc Inform). 2025 Jun;2025:352-358. doi: 10.1109/ICHI64645.2025.00048. Epub 2025 Jul 22.
2
Clinical applications of large language models in medicine and surgery: A scoping review.
J Int Med Res. 2025 Jul;53(7):3000605251347556. doi: 10.1177/03000605251347556. Epub 2025 Jul 4.
3
7
Adverse drug event detection using natural language processing: A scoping review of supervised learning methods.
PLoS One. 2023 Jan 3;18(1):e0279842. doi: 10.1371/journal.pone.0279842. eCollection 2023.
8
Machine learning approaches for electronic health records phenotyping: a methodical review.
J Am Med Inform Assoc. 2023 Jan 18;30(2):367-381. doi: 10.1093/jamia/ocac216.
9
Predicting Adverse Drug Reactions from Social Media Posts: Data Balance, Feature Selection and Deep Learning.
Healthcare (Basel). 2022 Mar 25;10(4):618. doi: 10.3390/healthcare10040618.
10
Recent Developments in Privacy-Preserving Mining of Clinical Data.
ACM IMS Trans Data Sci. 2021 Nov;2(4). doi: 10.1145/3447774.

本文引用的文献

2
De-identification of psychiatric intake records: Overview of 2016 CEGS N-GRID shared tasks Track 1.
J Biomed Inform. 2017 Nov;75S:S4-S18. doi: 10.1016/j.jbi.2017.06.011. Epub 2017 Jun 11.
4
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
5
A Study of Concept Extraction Across Different Types of Clinical Notes.
AMIA Annu Symp Proc. 2015 Nov 5;2015:737-46. eCollection 2015.
6
Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S20-S29. doi: 10.1016/j.jbi.2015.07.020. Epub 2015 Aug 28.
7
Extracting and standardizing medication information in clinical text - the MedEx-UIMA system.
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:37-42. eCollection 2014.
8
Cadec: A corpus of adverse drug event annotations.
J Biomed Inform. 2015 Jun;55:73-81. doi: 10.1016/j.jbi.2015.03.010. Epub 2015 Mar 27.
9
Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
BMC Med Inform Decis Mak. 2013;13 Suppl 1(Suppl 1):S1. doi: 10.1186/1472-6947-13-S1-S1. Epub 2013 Apr 5.
10
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验