Suppr超能文献

一种基于深度学习的系统,用于准确提取临床记录中的血压数据。

A deep-learning based system for accurate extraction of blood pressure data in clinical narratives.

作者信息

Xie Tianyi, Zhen Yi, Tavakoli Maryam, Hundley Gregory, Ge Yaorong

机构信息

University of North Carolina at Charlotte, Charlotte, NC, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:703-709. eCollection 2020.

Abstract

This study presents a novel workflow for identifying and analyzing blood pressure readings in clinical narratives using a Convolution Neural Network. The network performs three tasks: identifying blood pressure readings, determining the exactness of the readings, and then classifying the readings into three classes: general, treatment, and suggestion. The system can be easily set up and deployed by people who are not experts in clinical Natural Language Processing. The validation results on an independent test set show the first two of the three tasks achieve a precision, recall, and F-measure over or close to 95%, and the third task achieves an overall accuracy of 85.4%. The study demonstrates that the proposed workflow is effective for extracting blood pressure data in clinical notes. The workflow is general and can be easily adapted to analyze other clinical concepts for phenotyping tasks.

摘要

本研究提出了一种使用卷积神经网络在临床叙述中识别和分析血压读数的新颖工作流程。该网络执行三项任务:识别血压读数、确定读数的准确性,然后将读数分为三类:一般、治疗和建议。该系统可以由非临床自然语言处理专家的人员轻松设置和部署。在独立测试集上的验证结果表明,三项任务中的前两项的精确率、召回率和F值超过或接近95%,第三项任务的总体准确率为85.4%。该研究表明,所提出的工作流程对于在临床记录中提取血压数据是有效的。该工作流程具有通用性,可以轻松地进行调整以分析用于表型分析任务的其他临床概念。

相似文献

本文引用的文献

7
An overview of MetaMap: historical perspective and recent advances.MetaMap 概述:历史视角与最新进展。
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验