Suppr超能文献

利用泛函连接理论将微分方程约束解析嵌入到最小二乘支持向量机中。

Analytically Embedding Differential Equation Constraints into Least Squares Support Vector Machines Using the Theory of Functional Connections.

作者信息

Leake Carl, Johnston Hunter, Smith Lidia, Mortari Daniele

机构信息

Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA.

Mathematics Department, Blinn College, Bryan, TX 77802, USA.

出版信息

Mach Learn Knowl Extr. 2019 Dec;1(4):1058-1083. doi: 10.3390/make1040060. Epub 2019 Oct 9.

Abstract

Differential equations (DEs) are used as numerical models to describe physical phenomena throughout the field of engineering and science, including heat and fluid flow, structural bending, and systems dynamics. While there are many other techniques for finding approximate solutions to these equations, this paper looks to compare the application of the (TFC) with one based on least-squares support vector machines (LS-SVM). The TFC method uses a constrained expression, an expression that always satisfies the DE constraints, which transforms the process of solving a DE into solving an unconstrained optimization problem that is ultimately solved via least-squares (LS). In addition to individual analysis, the two methods are merged into a new methodology, called constrained SVMs (CSVM), by incorporating the LS-SVM method into the TFC framework to solve unconstrained problems. Numerical tests are conducted on four sample problems: One first order linear ordinary differential equation (ODE), one first order nonlinear ODE, one second order linear ODE, and one two-dimensional linear partial differential equation (PDE). Using the LS-SVM method as a benchmark, a speed comparison is made for all the problems by timing the training period, and an accuracy comparison is made using the maximum error and mean squared error on the training and test sets. In general, TFC is shown to be slightly faster (by an order of magnitude or less) and more accurate (by multiple orders of magnitude) than the LS-SVM and CSVM approaches.

摘要

微分方程(DEs)被用作数值模型,以描述工程和科学领域中的物理现象,包括热流和流体流动、结构弯曲以及系统动力学。虽然有许多其他技术可用于找到这些方程的近似解,但本文旨在比较(TFC)的应用与基于最小二乘支持向量机(LS-SVM)的应用。TFC方法使用一个约束表达式,一个始终满足微分方程约束的表达式,它将求解微分方程的过程转化为求解一个无约束优化问题,该问题最终通过最小二乘法(LS)求解。除了单独分析外,通过将LS-SVM方法纳入TFC框架以解决无约束问题,这两种方法被合并为一种新的方法,称为约束支持向量机(CSVM)。对四个样本问题进行了数值测试:一个一阶线性常微分方程(ODE)、一个一阶非线性ODE、一个二阶线性ODE和一个二维线性偏微分方程(PDE)。以LS-SVM方法为基准,通过对训练期计时对所有问题进行速度比较,并使用训练集和测试集上的最大误差和均方误差进行准确性比较。一般来说,与LS-SVM和CSVM方法相比,TFC显示出稍快(一个数量级或更小)且更准确(多个数量级)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d4/7259481/6f7960dfff61/nihms-1587755-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验