Rojas-Valencia Natalia, Gómez Sara, Guerra Doris, Restrepo Albeiro
Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy.
Phys Chem Chem Phys. 2020 Jun 17;22(23):13049-13061. doi: 10.1039/d0cp00428f.
Global and local descriptors of the properties of intermolecular bonding, formally derived from independent methodologies (QTAIM, NCI, NBO, density differences) afford a highly complex picture of the bonding interactions responsible for microsolvation of monoatomic cations. In all cases, the dominant factor dictating geometries and interaction strengths is the electrophilic power of the metal cation. The formal charge disrupts the hydrogen bonding network otherwise present in pristine water clusters, making the hydrogen bonds considerably stronger, even inducing some degree of covalency. All MO interactions are highly ionic, with strengths than in some cases approach that of the reference LiCl bond. Accumulation of electron density in the region connecting MO is observed, thus, ionic bonding in the microsolvation of monoatomic cations is not as simple as an electrostatic interaction between opposing charges.
分子间键合性质的全局和局部描述符,正式源自独立的方法(QTAIM、NCI、NBO、密度差异),提供了一幅高度复杂的键合相互作用图景,这些相互作用负责单原子阳离子的微溶剂化。在所有情况下,决定几何结构和相互作用强度的主导因素是金属阳离子的亲电能力。形式电荷破坏了原本存在于原始水簇中的氢键网络,使氢键显著增强,甚至诱导了一定程度的共价性。所有的分子轨道相互作用都是高度离子性的,在某些情况下其强度接近参考LiCl键的强度。观察到在连接分子轨道的区域有电子密度积累,因此,单原子阳离子微溶剂化中的离子键并不像相反电荷之间的静电相互作用那么简单。