Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
Instituto de Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia.
Molecules. 2022 Mar 17;27(6):1937. doi: 10.3390/molecules27061937.
High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.
采用扩展基组和 B3LYP−D3 优化几何结构的高水平 DLPNO−CCSD(T) 电子结构计算表明,咖啡因中的三个甲基基团克服了空间位阻,采用了不常见的构象,每个构象都使一个 C−H 键位于芳香体系的同一平面上,导致 C−H 键与一个羰基、一个融合双环芳香体系中强烈离域的 C−N 键和一个咪唑环上的 C−H 键重叠。删除不加区分的和选择性的非路易斯轨道,明确表明以双向−CH3 ⇆ 芳香体系电荷转移形式存在的超共轭作用是导致这些令人困惑的构象的原因。咖啡因中的结构偏好完全由轨道相互作用决定,排除了静电、诱导、键临界点和密度重新分布的影响,因为空间效应、烯丙基效应、分子中的原子量子理论 (QTAIM) 和非共价相互作用 (NCI) 都预测了错误的能量顺序。微小的旋转势垒不超过 1.3 kcal/mol 表明,在室温条件下,每个甲基基团要么充当自由转子,要么表现出流变性,从而阻止了对其构象的准确确定。在这种情况下,我们的结果取代了当前咖啡因中甲基构象分配的实验不确定性,更普遍地取代了甲基化黄嘌呤及其衍生物中的甲基构象不确定性。