Suppr超能文献

评估病例组合因素误分类对医疗服务提供者绩效评估的影响:透析机构的表现

Assessing the Impacts of Misclassified Case-Mix Factors on Health Care Provider Profiling: Performance of Dialysis Facilities.

作者信息

Mu Yi, Chin Andrew I, Kshirsagar Abhijit V, Bang Heejung

机构信息

Actelion Pharmaceuticals US, Inc., South San Francisco, CA, USA.

A Janssen Pharmaceutical Company of Johnson & Johnson.

出版信息

Inquiry. 2020 Jan-Dec;57:46958020919275. doi: 10.1177/0046958020919275.

Abstract

Quantitative metrics are used to develop profiles of health care institutions, including hospitals, nursing homes, and dialysis clinics. These profiles serve as measures of quality of care, which are used to compare institutions and determine reimbursement, as a part of a national effort led by the Center for Medicare and Medicaid Services in the United States. However, there is some concern about how misclassification in case-mix factors, which are typically accounted for in profiling, impacts results. We evaluated the potential effect of misclassification on profiling results, using 20 744 patients from 2740 dialysis facilities in the US Renal Data System. In this case study, we compared 30-day readmission as the profiling outcome measure, using comorbidity data from either the Center for Medicare and Medicaid Services Medical Evidence Report (error-prone) or Medicare claims (more accurate). Although the regression coefficient of the error-prone covariate demonstrated notable bias in simulation, the outcome measure-standardized readmission ratio-and profiling results were quite robust; for example, correlation coefficient of 0.99 in standardized readmission ratio estimates. Thus, we conclude that misclassification on case-mix did not meaningfully impact overall profiling results. We also identified both extreme degree of case-mix factor misclassification and magnitude of between-provider variability as 2 factors that can potentially exert enough influence on profile status to move a clinic from one performance category to another (eg, normal to worse performer).

摘要

定量指标用于建立包括医院、疗养院和透析诊所在内的医疗机构概况。这些概况作为医疗质量的衡量标准,在美国医疗保险和医疗补助服务中心主导的一项全国性工作中,被用于比较各机构并确定报销额度。然而,有人担心病例组合因素中的错误分类(通常在概况分析中予以考虑)会如何影响结果。我们利用美国肾脏数据系统中2740个透析机构的20744名患者,评估了错误分类对概况分析结果的潜在影响。在本案例研究中,我们将30天再入院率作为概况分析的结果指标,使用医疗保险和医疗补助服务中心医疗证据报告(容易出错)或医疗保险理赔数据(更准确)中的合并症数据进行比较。尽管在模拟中,容易出错的协变量的回归系数显示出明显偏差,但结果指标标准化再入院率以及概况分析结果相当稳健;例如,标准化再入院率估计值的相关系数为0.99。因此,我们得出结论,病例组合的错误分类对整体概况分析结果没有显著影响。我们还确定了病例组合因素错误分类的极端程度和提供者之间差异的大小是两个可能对概况状态产生足够影响从而使诊所从一个绩效类别转变为另一个类别(例如,从正常变为表现较差)的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b5/7265077/c0e650e4951b/10.1177_0046958020919275-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验