The ithree institute, University of Technology Sydney, Ultimo 2007, New South Wales, Australia.
National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK.
Microbiology (Reading). 2020 Jul;166(7):669-678. doi: 10.1099/mic.0.000911.
Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3'-5'-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in .
抽搐运动介导的生物膜扩展通过协调的、多细胞的集体行为发生,使细菌能够主动在表面上扩展。IV 型菌毛(T4P)是与细胞相关的毒力因子,通过一系列的延伸、表面附着和缩回介导抽搐运动。Chp 化学感觉系统被认为可以响应环境信号来调节 T4P 的生物发生、组装和抽搐运动功能。在其他特征良好的化学感觉系统中,甲基接受趋化性蛋白(MCP)通过 CheW 衔接蛋白将环境信号传递给组氨酸激酶 CheA,以调节运动。Chp 系统有一个 MCP PilJ 和两个 CheW 衔接蛋白 PilI 和 ChpC,它们可能与组氨酸激酶 ChpA 相互作用,将环境信号传入系统。在本研究中,我们表明 ChpC 参与了对宿主来源的信号血清白蛋白、粘蛋白和寡肽的反应。我们证明这些信号刺激了抽搐运动的增加,以及 3'-5'-环磷酸腺苷(cAMP)和表面组装的 T4P 的水平。有趣的是,我们的数据表明 cAMP 和表面菌毛水平的变化与 ChpC 无关,但对这些环境信号的抽搐运动反应需要 ChpC。此外,我们表明蛋白酶活性是对环境信号的抽搐运动反应所必需的。基于我们的数据,我们提出了一个模型,即 ChpC 通过 PilJ 或另一个 MCP 将这些环境信号传入 Chp 系统,以控制抽搐运动。然后,PilJ 和 PilI 调节 T4P 表面水平,使细胞能够继续进行抽搐运动。我们的研究首次将环境信号与 Chp 化学感觉系统联系起来,并完善了我们对该系统如何控制 在抽搐运动介导的生物膜扩展中的理解。