Suppr超能文献

MixONat,一款基于 C NMR 光谱解析的混合物去复制品软件。

MixONat, a Software for the Dereplication of Mixtures Based on C NMR Spectroscopy.

机构信息

SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France.

JEOL Europe SAS, 1 Allée de Giverny, 78290 Croissy-sur-Seine, France.

出版信息

Anal Chem. 2020 Jul 7;92(13):8793-8801. doi: 10.1021/acs.analchem.0c00193. Epub 2020 Jun 17.

Abstract

Whether chemists or biologists, researchers dealing with metabolomics require tools to decipher complex mixtures. As a part of metabolomics and initially dedicated to identifying bioactive natural products, dereplication aims at reducing the usual time-consuming process of known compounds isolation. Mass spectrometry and nuclear magnetic resonance are the most commonly reported analytical tools during dereplication analysis. Though it has low sensitivity, C NMR has many advantages for such a study. Notably, it is nonspecific allowing simultaneous high-resolution analysis of any organic compounds including stereoisomers. Since NMR spectrometers nowadays provide useful data sets in a reasonable time frame, we have embarked upon writing software dedicated to C NMR dereplication. The present study describes the development of a freely distributed algorithm, namely MixONat and its ability to help researchers decipher complex mixtures. Based on Python 3.5, MixONat analyses a {H}-C NMR spectrum optionally combined with DEPT-135 and 90 data-to distinguish carbon types (i.e., CH, CH, CH, and C)-as well as a MW filtering. The software requires predicted or experimental carbon chemical shifts (δc) databases and displays results that can be refined based on user interactions. As a proof of concept, this C NMR dereplication strategy was evaluated on mixtures of increasing complexity and exhibiting pharmaceutical (poppy alkaloids), nutritional (rosemary extracts) or cosmetics (mangosteen peel extract) applications. Associated results were compared with other methods commonly used for dereplication. MixONat gave coherent results that rapidly oriented the user toward the correct structural types of secondary metabolites, allowing the user to distinguish between structurally close natural products, including stereoisomers.

摘要

无论是化学家还是生物学家,从事代谢组学研究的研究人员都需要工具来破译复杂混合物。作为代谢组学的一部分,最初专门用于鉴定生物活性天然产物,去复制品旨在减少已知化合物分离的通常耗时过程。质谱和核磁共振是去复制品分析中最常报道的分析工具。尽管 C NMR 的灵敏度较低,但它在这种研究中有许多优点。值得注意的是,它是非特异性的,允许同时对任何有机化合物(包括立体异构体)进行高分辨率分析。由于当今的 NMR 光谱仪在合理的时间框架内提供有用的数据集,我们已经开始编写专门用于 C NMR 去复制品的软件。本研究描述了一种免费分发算法即 MixONat 的开发及其帮助研究人员破译复杂混合物的能力。MixONat 基于 Python 3.5,分析 {H}-C NMR 光谱,可选地结合 DEPT-135 和 90 数据,以区分碳类型(即 CH、CH、CH 和 C)以及 MW 过滤。该软件需要预测或实验碳化学位移(δc)数据库,并显示可以根据用户交互进行细化的结果。作为概念验证,这种 C NMR 去复制品策略在具有增加的复杂性并表现出药物(罂粟生物碱)、营养(迷迭香提取物)或化妆品(山竹果皮提取物)应用的混合物上进行了评估。相关结果与通常用于去复制品的其他方法进行了比较。MixONat 给出了一致的结果,这些结果迅速使用户能够确定次生代谢物的正确结构类型,从而使用户能够区分结构上接近的天然产物,包括立体异构体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验