Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, SFR CAP'SANTE, Université de Reims Champagne-Ardenne , Moulin de la Housse, BP 1039, 51687 Reims Cedex, France.
Active Beauty Department, Givaudan France, Route de Bazancourt, 51110 Pomacle, France.
J Chem Inf Model. 2018 Feb 26;58(2):262-270. doi: 10.1021/acs.jcim.7b00653. Epub 2018 Jan 31.
A new in silico method is introduced for the dereplication of natural metabolite mixtures based on HMBC and HSQC spectra that inform about short-range and long-range H-C correlations occurring in the carbon skeleton of individual chemical entities. Starting from the HMBC spectrum of a metabolite mixture, an algorithm was developed in order to recover individualized HMBC footprints of the mixture constituents. The collected H-C correlations are represented by a network of NMR peaks connected to each other when sharing either a H or C chemical shift value. The network obtained is then divided into clusters using a community detection algorithm, and finally each cluster is tentatively assigned to a molecular structure by means of a NMR chemical shift database containing the theoretical HMBC and HSQC correlation data of a range of natural metabolites. The proof of principle of this method is demonstrated on a model mixture of 3 known natural compounds and then on a real-life bark extract obtained from the common spruce (Picea abies L.).
一种新的基于 HMBC 和 HSQC 光谱的天然代谢物混合物去重的计算方法,这些光谱提供了发生在单个化学实体碳骨架中的短程和远程 H-C 相关信息。从代谢物混合物的 HMBC 光谱开始,开发了一种算法,以便从混合物成分中恢复个体化的 HMBC 特征。收集到的 H-C 相关信息由一组 NMR 峰组成,这些峰通过共享 H 或 C 化学位移值相互连接。然后使用社区检测算法将获得的网络划分为簇,最后通过包含一系列天然代谢物的理论 HMBC 和 HSQC 相关数据的 NMR 化学位移数据库,对每个簇进行初步分配,以确定其分子结构。该方法的原理证明是基于 3 种已知天然化合物的模型混合物进行的,然后是从普通云杉(Picea abies L.)获得的实际树皮提取物进行的。