Suppr超能文献

微生物的环境监测曼荼罗:预测比斯开湾海洋原核生物群落的多种影响。

A microbial mandala for environmental monitoring: Predicting multiple impacts on estuarine prokaryote communities of the Bay of Biscay.

机构信息

AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain.

IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain.

出版信息

Mol Ecol. 2021 Jul;30(13):2969-2987. doi: 10.1111/mec.15489. Epub 2020 Jun 20.

Abstract

Routine monitoring of benthic biodiversity is critical for managing and understanding the anthropogenic impacts on marine, transitional and freshwater ecosystems. However, traditional reliance on morphological identification generally makes it cost-prohibitive to increase the scale of monitoring programmes. Metabarcoding of environmental DNA has clear potential to overcome many of the problems associated with traditional monitoring, with prokaryotes and other microorganisms showing particular promise as bioindicators. However, due to the limited knowledge regarding the ecological roles and responses of environmental microorganisms to different types of pressure, the use of de novo approaches is necessary. Here, we use two such approaches for the prediction of multiple impacts present in estuaries and coastal areas of the Bay of Biscay based on microbial communities. The first (Random Forests) is a machine learning method while the second (Threshold Indicator Taxa Analysis and quantile regression splines) is based on de novo identification of bioindicators. Our results show that both methods overlap considerably in the indicator taxa identified, but less for sequence variants. Both methods also perform well in spite of the complexity of the studied ecosystem, providing predictive models with strong correlation to reference values and fair to good agreement with ecological status groups. The ability to predict several specific types of pressure is especially appealing. The cross-validated models and biotic indices developed can be directly applied to predict the environmental status of estuaries in the same geographical region, although more work is needed to evaluate and improve them for use in new regions or habitats.

摘要

对底栖生物多样性进行常规监测对于管理和了解海洋、过渡和淡水生态系统的人为影响至关重要。然而,传统上依赖形态鉴定通常使得扩大监测计划的规模变得成本高昂。环境 DNA 的代谢组学具有克服与传统监测相关的许多问题的明显潜力,原核生物和其他微生物作为生物指标显示出特别有希望的前景。然而,由于对环境微生物对不同类型压力的生态作用和反应的了解有限,因此需要采用新方法。在这里,我们使用两种这样的方法根据微生物群落预测比斯开湾河口和沿海地区存在的多种影响。第一种方法(随机森林)是一种机器学习方法,而第二种方法(阈值指示分类分析和分位数回归样条)是基于对生物标志物的新识别。我们的结果表明,两种方法在识别的指示分类群上有很大的重叠,但在序列变体上则较少。尽管研究的生态系统复杂,但这两种方法都表现良好,为参考值提供了具有强相关性的预测模型,并且与生态状况组具有公平到良好的一致性。能够预测几种特定类型的压力尤其吸引人。开发的交叉验证模型和生物指标可以直接应用于预测同一地理区域内河口的环境状况,尽管需要做更多的工作来评估和改进它们,以用于新的区域或生境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验