Suppr超能文献

线粒体 AIF 的缺失会导致代谢重编程、胱天蛋白酶非依赖性细胞死亡阻断、胚胎致死和围产期脑积水。

Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus.

机构信息

Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France.

Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.

出版信息

Mol Metab. 2020 Oct;40:101027. doi: 10.1016/j.molmet.2020.101027. Epub 2020 May 30.

Abstract

OBJECTIVES

Apoptosis-Inducing Factor (AIF) is a protein involved in mitochondrial electron transport chain assembly/stability and programmed cell death. The relevant role of this protein is underlined because mutations altering mitochondrial AIF properties result in acute pediatric mitochondriopathies and tumor metastasis. By generating an original AIF-deficient mouse strain, this study attempted to analyze, in a single paradigm, the cellular and developmental metabolic consequences of AIF loss and the subsequent oxidative phosphorylation (OXPHOS) dysfunction.

METHODS

We developed a novel AIF-deficient mouse strain and assessed, using molecular and cell biology approaches, the cellular, embryonic, and adult mice phenotypic alterations. Additionally, we conducted ex vivo assays with primary and immortalized AIF knockout mouse embryonic fibroblasts (MEFs) to establish the cell death characteristics and the metabolic adaptive responses provoked by the mitochondrial electron transport chain (ETC) breakdown.

RESULTS

AIF deficiency destabilized mitochondrial ETC and provoked supercomplex disorganization, mitochondrial transmembrane potential loss, and high generation of mitochondrial reactive oxygen species (ROS). AIF MEFs counterbalanced these OXPHOS alterations by mitochondrial network reorganization and a metabolic reprogramming toward anaerobic glycolysis illustrated by the AMPK phosphorylation at Thr172, the overexpression of the glucose transporter GLUT-4, the subsequent enhancement of glucose uptake, and the anaerobic lactate generation. A late phenotype was characterized by the activation of P53/P21-mediated senescence. Notably, approximately 2% of AIF MEFs diminished both mitochondrial mass and ROS levels and spontaneously proliferated. These cycling AIF MEFs were resistant to caspase-independent cell death inducers. The AIF-deficient mouse strain was embryonic lethal between E11.5 and E13.5 with energy loss, proliferation arrest, and increased apoptotic levels. Contrary to AIF MEFs, the AIF KO embryos were unable to reprogram their metabolism toward anaerobic glycolysis. Heterozygous AIF females displayed progressive bone marrow, thymus, and spleen cellular loss. In addition, approximately 10% of AIF females developed perinatal hydrocephaly characterized by brain development impairment, meningeal fibrosis, and medullar hemorrhages; those mice died 5 weeks after birth. AIF with hydrocephaly exhibited loss of ciliated epithelium in the ependymal layer. This phenotype was triggered by the ROS excess. Accordingly, it was possible to diminish the occurrence of hydrocephalus AIF females by supplying dams and newborns with an antioxidant in drinking water.

CONCLUSIONS

In a single knockout model and at 3 different levels (cell, embryo, and adult mice) we demonstrated that by controlling the mitochondrial OXPHOS/metabolism, AIF is a key factor regulating cell differentiation and fate. Additionally, by providing new insights into the pathological consequences of mitochondrial OXPHOS dysfunction, our new findings pave the way for novel pharmacological strategies.

摘要

目的

凋亡诱导因子(AIF)是一种参与线粒体电子传递链组装/稳定性和程序性细胞死亡的蛋白质。该蛋白质的相关作用是很重要的,因为改变线粒体 AIF 性质的突变会导致急性儿科线粒体病和肿瘤转移。本研究通过生成原始的 AIF 缺陷小鼠品系,试图在单一范例中分析 AIF 缺失的细胞和发育代谢后果以及随后的氧化磷酸化(OXPHOS)功能障碍。

方法

我们开发了一种新型的 AIF 缺陷小鼠品系,并使用分子和细胞生物学方法评估了细胞、胚胎和成年小鼠表型改变。此外,我们对原代和永生化 AIF 敲除小鼠胚胎成纤维细胞(MEF)进行了体外实验,以确定线粒体电子传递链(ETC)破坏引起的细胞死亡特征和代谢适应反应。

结果

AIF 缺乏使线粒体 ETC 不稳定,并引发超复合物解聚、线粒体跨膜电位丧失和高水平的线粒体活性氧(ROS)生成。AIF MEF 通过线粒体网络重排和向无氧糖酵解的代谢重编程来平衡这些 OXPHOS 改变,表现为 AMPK 在 Thr172 位点的磷酸化、葡萄糖转运蛋白 GLUT-4 的过度表达、随后的葡萄糖摄取增强以及无氧乳酸生成。晚期表型的特征是 P53/P21 介导的衰老的激活。值得注意的是,大约 2%的 AIF MEF 减少了线粒体质量和 ROS 水平并自发增殖。这些循环 AIF MEF 对 caspase 非依赖性细胞死亡诱导剂具有抗性。AIF 缺陷小鼠品系在 E11.5 至 E13.5 之间胚胎致死,表现为能量损失、增殖停滞和凋亡水平增加。与 AIF MEF 相反,AIF KO 胚胎无法将其代谢重编程为无氧糖酵解。杂合 AIF 雌性表现出骨髓、胸腺和脾脏细胞逐渐丢失。此外,大约 10%的 AIF 雌性在围产期出现脑积水,其特征为脑发育障碍、脑膜纤维化和髓质出血;这些小鼠在出生后 5 周死亡。患有脑积水的 AIF 表现出室管膜层纤毛上皮的丧失。这种表型是由 ROS 过量引起的。因此,通过在饮用水中为母鼠和新生鼠提供抗氧化剂,可以减少发生脑积水的 AIF 雌性的数量。

结论

在单一敲除模型和 3 个不同水平(细胞、胚胎和成年小鼠)中,我们证明通过控制线粒体 OXPHOS/代谢,AIF 是调节细胞分化和命运的关键因素。此外,通过提供对线粒体 OXPHOS 功能障碍的病理后果的新见解,我们的新发现为新的药理学策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/7334469/891d64b16ef7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验