Wegener Frederik, Beyschlag Wolfram, Werner Christiane
AgroEcosystem Research, BAYCEER, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
Funct Plant Biol. 2015 Jun;42(7):620-629. doi: 10.1071/FP14152.
Organs of C3 plants differ in their C isotopic signature (δ13C). In general, leaves are 13C-depleted relative to other organs. To investigate the development of spatial δ13C patterns, we induced different C allocation strategies by reducing light and nutrient availability for 12 months in the Mediterranean shrub Halimium halimifolium L. We measured morphological and physiological traits and the spatial δ13C variation among seven tissue classes during the experiment. A reduction of light (Low-L treatment) increased aboveground C allocation, plant height and specific leaf area. Reduced nutrient availability (Low-N treatment) enhanced C allocation into fine roots and reduced the spatial δ13C variation. In contrast, control and Low-L plants with high C allocation in new leaves showed a high δ13C variation within the plant (up to 2.5‰). The spatial δ13C variation was significantly correlated with the proportion of second-generation leaves from whole-plant biomass (R2=0.46). According to our results, isotope fractionation in dark respiration can influence the C isotope composition of plant tissues but cannot explain the entire spatial pattern seen. Our study indicates a foliar depletion in 13C during leaf development combined with export of relatively 13C-enriched C by mature source leaves as an important reason for the observed spatial δ13C pattern.
C3植物的不同器官具有不同的碳同位素特征(δ13C)。一般来说,叶片相对于其他器官而言贫13C。为了研究空间δ13C模式的发展,我们通过在地中海灌木沙地半日花(Halimium halimifolium L.)中减少光照和养分供应12个月来诱导不同的碳分配策略。在实验过程中,我们测量了七个组织类别的形态和生理特征以及空间δ13C变化。光照减少(低光照处理)增加了地上部分的碳分配、株高和比叶面积。养分供应减少(低氮处理)增强了碳向细根的分配,并减少了空间δ13C变化。相比之下,新叶中碳分配较高的对照植株和低光照处理植株在植株内表现出较高的δ13C变化(高达2.5‰)。空间δ13C变化与全株生物量中第二代叶片的比例显著相关(R2 = 0.46)。根据我们的结果,暗呼吸中的同位素分馏会影响植物组织的碳同位素组成,但无法解释所观察到的整个空间模式。我们的研究表明,叶片发育过程中13C的叶部贫化,以及成熟源叶输出相对富13C的碳,是观察到的空间δ13C模式的一个重要原因。