Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
Nat Commun. 2020 Jun 1;11(1):2714. doi: 10.1038/s41467-020-16423-1.
Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.
电子传递链 (ETC) 的缺陷源于线粒体疾病突变,会影响 ATP 的合成,并使细胞容易受到营养和氧化应激条件的影响。这种生物能量的衰竭被认为是与线粒体疾病相关的病理学的基础。然而,对于在线粒体 ETC 缺陷下导致应激条件下细胞活力受损的精确代谢过程,我们还不完全了解。我们设计了一个全基因组功能获得型 CRISPR 激活筛选,使用人类线粒体疾病复合物 I (CI) 突变细胞来鉴定那些增加功能可挽救葡萄糖限制诱导的细胞死亡的基因。该筛选的主要命中是细胞质苹果酸酶 (ME1),它足以使 CI 突变细胞在营养应激条件下存活和增殖。出乎意料的是,这种代谢挽救与通过糖酵解或氧化磷酸化增加 ATP 合成无关,而是依赖于 ME1 产生的 NADPH 和谷胱甘肽 (GSH)。在营养应激或戊糖磷酸途径 (PPP) 抑制下的存活取决于通过线粒体一碳代谢产生的补偿性 NADPH,而 CI 突变细胞中的这种代谢严重受损。重要的是,这种有缺陷的 CI 依赖性减少线粒体 NADPH 产生途径或 SHMT2 的基因缺失会导致与氧化还原依赖性 ASK1 诱导和应激激酶 p38 和 JNK 激活相关的炎症细胞因子标志物显著增加。这些研究发现,CI 缺乏的一个主要缺陷是线粒体一碳 NADPH 产生减少,这与炎症和细胞死亡增加有关。
Int J Biol Sci. 2025-7-28
Nat Metab. 2025-3
Signal Transduct Target Ther. 2025-1-10