Suppr超能文献

通过转录组轨迹分析预测阿尔茨海默病亚型并了解活体患者的分子特征。

Predicting Alzheimer's disease subtypes and understanding their molecular characteristics in living patients with transcriptomic trajectory profiling.

作者信息

Huang Xiaoqing, Jannu Asha Jacob, Song Ziyan, Jury-Garfe Nur, Lasagna-Reeves Cristian A, Johnson Travis S, Huang Kun, Zhang Jie

机构信息

Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Department of Biohealth Informatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.

出版信息

Alzheimers Dement. 2025 Jan;21(1):e14241. doi: 10.1002/alz.14241. Epub 2025 Jan 15.

Abstract

INTRODUCTION

Deciphering the diverse molecular mechanisms in living Alzheimer's disease (AD) patients is a big challenge but is pivotal for disease prognosis and precision medicine development.

METHODS

Utilizing an optimal transport approach, we conducted graph-based mapping of transcriptomic profiles to transfer AD subtype labels from ROSMAP monocyte samples to ADNI and ANMerge peripheral blood mononuclear cells. Subsequently, differential expression followed by comparative pathway and diffusion pseudotime analysis were applied to each cohort to infer the progression trajectories. Survival analysis with real follow-up time was used to obtain potential biomarkers for AD prognosis.

RESULTS

AD subtype labels were accurately transferred onto the blood samples of ADNI and ANMerge living patients. Pathways and associated genes in neutrophil degranulation-like immune process, immune acute phase response, and IL-6 signaling were significantly associated with AD progression.

DISCUSSION

The work enhanced our understanding of AD progression in different subtypes, offering insights into potential biomarkers and personalized interventions for improved patient care.

HIGHLIGHTS

We applied an innovative optimal transport-based approach to map transcriptomic data from different Alzheimer's disease (AD) cohort studies and transfer known AD subtype labels from ROSMAP monocyte samples to peripheral blood mononuclear cell (PBMC) samples within ADNI and ANMerge cohorts. Through comprehensive trajectory and comparative analysis, we investigated the molecular mechanisms underlying different disease progression trajectories in AD. We validated the accuracy of our AD subtype label transfer and identified prognostic genetic markers associated with disease progression, facilitating personalized treatment strategies. By identifying and predicting distinctive AD subtypes and their associated pathways, our study contributes to a deeper understanding of AD heterogeneity.

摘要

引言

解读活体阿尔茨海默病(AD)患者体内多样的分子机制是一项巨大挑战,但对疾病预后和精准医学发展至关重要。

方法

我们利用最优传输方法,对转录组图谱进行基于图的映射,将AD亚型标签从ROSMAP单核细胞样本转移至ADNI和ANMerge外周血单核细胞。随后,对每个队列进行差异表达分析,接着进行比较性通路分析和扩散伪时间分析,以推断疾病进展轨迹。使用具有实际随访时间的生存分析来获取AD预后的潜在生物标志物。

结果

AD亚型标签被准确转移至ADNI和ANMerge活体患者的血液样本上。中性粒细胞脱颗粒样免疫过程、免疫急性期反应和白细胞介素-6信号通路中的相关基因与AD进展显著相关。

讨论

这项工作加深了我们对不同亚型AD进展的理解,为潜在生物标志物和个性化干预措施提供了见解,以改善患者护理。

亮点

我们应用了一种创新的基于最优传输的方法,对来自不同阿尔茨海默病(AD)队列研究的转录组数据进行映射,并将已知的AD亚型标签从ROSMAP单核细胞样本转移至ADNI和ANMerge队列中的外周血单核细胞(PBMC)样本。通过全面的轨迹和比较分析,我们研究了AD中不同疾病进展轨迹背后的分子机制。我们验证了AD亚型标签转移的准确性,并确定了与疾病进展相关的预后遗传标志物,有助于制定个性化治疗策略。通过识别和预测独特的AD亚型及其相关通路,我们的研究有助于更深入地理解AD的异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e35e/11772740/16400c9d70ab/ALZ-21-e14241-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验