College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
College of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
Anal Bioanal Chem. 2020 Jul;412(19):4703-4712. doi: 10.1007/s00216-020-02727-0. Epub 2020 Jun 2.
Understanding the influencing factors on the reaction kinetics of P450 BM3 within confined spaces is essential for developing efficient P450 BM3 bioreactors. Herein, two dendritic mesoporous silica nanoparticles (OH-DMSNs and NH-DMSNs) with similar pore size but opposite surface charge have been prepared and served as the vehicle to immobilize P450 BM3. With the help of the film-forming material of chitosan, P450 BM3/OH-DMSN and P450 BM3/NH-DMSN composites were immobilized on GC electrode and characterized with electrochemical measurements. Compared with P450 BM3/OH-DMSNs/GCE, P450 BM3/NH-DMSNs/GCE showed higher electron transfer efficiency with higher current charge and lower k value. Besides, the generated catalytic current towards testosterone on P450 BM3/NH-DMSNs/GCE was 1.81 times larger than P450 BM3/OH-DMSNs/GCE. Furthermore, P450 BM3 inside NH-DMSNs displayed higher affinity towards testosterone with the lower K value of 244.82 μM. These results are attributed to the positively charged internal walls of NH-DMSNs so that P450 BM3 adapts to an orientation favorable for electron exchange with electrodes and substrate binding with the active sites. The present study provides fundamentals for regulating the surface charge to optimize redox process and catalytic behavior in CYP bioreactors through electrostatic interactions.
理解 P450 BM3 在受限空间中的反应动力学的影响因素对于开发高效的 P450 BM3 生物反应器至关重要。在此,制备了两种具有相似孔径但带相反电荷的树枝状介孔硅纳米粒子(OH-DMSN 和 NH-DMSN),并将其用作固定 P450 BM3 的载体。在壳聚糖成膜材料的帮助下,将 P450 BM3/OH-DMSN 和 P450 BM3/NH-DMSN 复合材料固定在 GC 电极上,并通过电化学测量进行了表征。与 P450 BM3/OH-DMSNs/GCE 相比,P450 BM3/NH-DMSNs/GCE 具有更高的电子转移效率,更高的电流电荷和更低的 k 值。此外,P450 BM3/NH-DMSNs/GCE 对睾酮的催化电流比 P450 BM3/OH-DMSNs/GCE 大 1.81 倍。此外,NH-DMSNs 内部的 P450 BM3 对睾酮具有更高的亲和力,其 K 值为 244.82 μM。这些结果归因于 NH-DMSNs 的带正电荷的内壁,使 P450 BM3 适应了与电极进行电子交换和与活性位点结合底物的有利方向。本研究通过静电相互作用为调节表面电荷以优化 CYP 生物反应器中的氧化还原过程和催化行为提供了基础。