Suppr超能文献

基因表达和DNA甲基化数据的综合分析确定了肺腺癌的潜在生物标志物和功能性表观遗传模块。

Comprehensive analysis of gene expression and DNA methylation data identifies potential biomarkers and functional epigenetic modules for lung adenocarcinoma.

作者信息

Wang XiaoCong, Li YanMei, Hu HuiHua, Zhou FangZheng, Chen Jie, Zhang DongSheng

机构信息

Hubei University of Medicine, Department of Oncology, Suizhou Hospital, Suizhou, Hubei, China.

Hubei University of Medicine, Department of ICU, Suizhou Hospital, Suizhou, Hubei, China.

出版信息

Genet Mol Biol. 2020 Jun 1;43(3):e20190164. doi: 10.1590/1678-4685-GMB-2019-0164.

Abstract

Lung cancer has one of the highest mortality rates of malignant neoplasms. Lung adenocarcinoma (LUAD) is one of the most common types of lung cancer. DNA methylation is more stable than gene expression and could be used as a biomarker for early tumor diagnosis. This study is aimed to screen potential DNA methylation signatures to facilitate the diagnosis and prognosis of LUAD and integrate gene expression and DNA methylation data of LUAD to identify functional epigenetic modules. We systematically integrated gene expression and DNA methylation data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), bioinformatic models and algorithms were implemented to identify signatures and functional modules for LUAD. Three promising diagnostic and five potential prognostic signatures for LUAD were screened by rigorous filtration, and our tumor-normal classifier and prognostic model were validated in two separate data sets. Additionally, we identified functional epigenetic modules in the TCGA LUAD dataset and GEO independent validation data set. Interestingly, the MUC1 module was identified in both datasets. The potential biomarkers for the diagnosis and prognosis of LUAD are expected to be further verified in clinical practice to aid in the diagnosis and treatment of LUAD.

摘要

肺癌是恶性肿瘤中死亡率最高的疾病之一。肺腺癌(LUAD)是最常见的肺癌类型之一。DNA甲基化比基因表达更稳定,可作为早期肿瘤诊断的生物标志物。本研究旨在筛选潜在的DNA甲基化特征,以促进LUAD的诊断和预后,并整合LUAD的基因表达和DNA甲基化数据,以识别功能性表观遗传模块。我们系统地整合了来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)的基因表达和DNA甲基化数据,运用生物信息学模型和算法来识别LUAD的特征和功能模块。通过严格筛选,筛选出了三个有前景的LUAD诊断特征和五个潜在的预后特征,我们的肿瘤-正常分类器和预后模型在两个独立的数据集中得到了验证。此外,我们在TCGA LUAD数据集和GEO独立验证数据集中识别出了功能性表观遗传模块。有趣的是,在两个数据集中都识别出了MUC1模块。LUAD诊断和预后的潜在生物标志物有望在临床实践中得到进一步验证,以辅助LUAD的诊断和治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验