Suppr超能文献

用于常见癌症诊断和预后的 DNA 甲基化标志物。

DNA methylation markers for diagnosis and prognosis of common cancers.

机构信息

Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China;

State Key Laboratory of Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7414-7419. doi: 10.1073/pnas.1703577114. Epub 2017 Jun 26.

Abstract

The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis.

摘要

利用微创活检来识别特定癌症,对于改善癌症的诊断、治疗选择和预后预测具有巨大的潜力。我们使用来自癌症基因组图谱(TCGA)的全基因组甲基化数据和机器学习方法,评估了 DNA 甲基化在区分四种常见癌症(乳腺、结肠、肝脏和肺部)的肿瘤组织和正常组织方面的效用。我们在一个包含 1619 个肿瘤样本和 173 个匹配的相邻正常组织样本的训练队列中确定了癌症标志物。我们在 TCGA 队列的 791 个肿瘤样本和 93 个匹配的相邻正常组织样本以及一个独立的中国队列的 394 个肿瘤样本和 324 个匹配的相邻正常组织样本中复制了我们的发现。在这三个队列中,DNA 甲基化分析可以以超过 95%的准确率预测癌症与正常组织,其准确性可与典型的诊断方法相媲美。该分析还正确识别了 30 例结直肠癌肝转移中的 29 例和 34 例结直肠癌肺转移中的 32 例。我们还发现,甲基化模式可以预测预后和生存。我们将与癌症生物学密切相关的已知基因的相关 CpG 位点的差异甲基化与表达相关联,结果显示,随着甲基化程度的增加,表达量下降,这是符合预期的。我们在肝细胞癌的小鼠模型中验证了基因表达谱。总之,这些发现证明了甲基化生物标志物在癌症的分子特征描述方面的效用,对诊断和预后具有重要意义。

相似文献

1
DNA methylation markers for diagnosis and prognosis of common cancers.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7414-7419. doi: 10.1073/pnas.1703577114. Epub 2017 Jun 26.
2
Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis.
Epigenetics. 2019 Jan;14(1):67-80. doi: 10.1080/15592294.2019.1568178. Epub 2019 Jan 29.
4
Colon cancer-specific diagnostic and prognostic biomarkers based on genome-wide abnormal DNA methylation.
Aging (Albany NY). 2020 Nov 17;12(22):22626-22655. doi: 10.18632/aging.103874.
9
DNA methylation profiles of bronchoscopic biopsies for the diagnosis of lung cancer.
Clin Epigenetics. 2021 Feb 17;13(1):38. doi: 10.1186/s13148-021-01024-6.

引用本文的文献

1
Diagnosis of early-stage non-small cell lung cancer using DNA methylation in tissue and plasma.
Genes Dis. 2025 Jan 28;12(6):101548. doi: 10.1016/j.gendis.2025.101548. eCollection 2025 Nov.
2
Advancements in DNA methylation technologies and their application in cancer diagnosis.
Epigenetics. 2025 Dec;20(1):2539995. doi: 10.1080/15592294.2025.2539995. Epub 2025 Jul 28.
3
A review of the use of tumour DNA methylation for breast cancer subtyping and prediction of outcomes.
Clin Epigenetics. 2025 Jul 2;17(1):109. doi: 10.1186/s13148-025-01922-z.
7
Analysing DNA methylation and transcriptomic signatures to predict prostate cancer recurrence risk.
Discov Oncol. 2025 Feb 1;16(1):110. doi: 10.1007/s12672-025-01833-8.
8
Convergence of evolving artificial intelligence and machine learning techniques in precision oncology.
NPJ Digit Med. 2025 Jan 31;8(1):75. doi: 10.1038/s41746-025-01471-y.
9
Tumour DNA methylation markers associated with breast cancer survival: a replication study.
Breast Cancer Res. 2025 Jan 17;27(1):9. doi: 10.1186/s13058-024-01955-x.

本文引用的文献

1
Identification of tissue-specific cell death using methylation patterns of circulating DNA.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1826-34. doi: 10.1073/pnas.1519286113. Epub 2016 Mar 14.
2
Identification and characterization of essential genes in the human genome.
Science. 2015 Nov 27;350(6264):1096-101. doi: 10.1126/science.aac7041. Epub 2015 Oct 15.
4
Assessing the clinical utility of cancer genomic and proteomic data across tumor types.
Nat Biotechnol. 2014 Jul;32(7):644-52. doi: 10.1038/nbt.2940. Epub 2014 Jun 22.
5
A pan-cancer proteomic perspective on The Cancer Genome Atlas.
Nat Commun. 2014 May 29;5:3887. doi: 10.1038/ncomms4887.
6
Predictive and prognostic analysis of PIK3CA mutation in stage III colon cancer intergroup trial.
J Natl Cancer Inst. 2013 Dec 4;105(23):1789-98. doi: 10.1093/jnci/djt298. Epub 2013 Nov 14.
7
Mutational landscape and significance across 12 major cancer types.
Nature. 2013 Oct 17;502(7471):333-339. doi: 10.1038/nature12634.
8
MuSiC: identifying mutational significance in cancer genomes.
Genome Res. 2012 Aug;22(8):1589-98. doi: 10.1101/gr.134635.111. Epub 2012 Jul 3.
9
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.
Genome Res. 2012 Mar;22(3):568-76. doi: 10.1101/gr.129684.111. Epub 2012 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验