Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China;
State Key Laboratory of Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7414-7419. doi: 10.1073/pnas.1703577114. Epub 2017 Jun 26.
The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis.
利用微创活检来识别特定癌症,对于改善癌症的诊断、治疗选择和预后预测具有巨大的潜力。我们使用来自癌症基因组图谱(TCGA)的全基因组甲基化数据和机器学习方法,评估了 DNA 甲基化在区分四种常见癌症(乳腺、结肠、肝脏和肺部)的肿瘤组织和正常组织方面的效用。我们在一个包含 1619 个肿瘤样本和 173 个匹配的相邻正常组织样本的训练队列中确定了癌症标志物。我们在 TCGA 队列的 791 个肿瘤样本和 93 个匹配的相邻正常组织样本以及一个独立的中国队列的 394 个肿瘤样本和 324 个匹配的相邻正常组织样本中复制了我们的发现。在这三个队列中,DNA 甲基化分析可以以超过 95%的准确率预测癌症与正常组织,其准确性可与典型的诊断方法相媲美。该分析还正确识别了 30 例结直肠癌肝转移中的 29 例和 34 例结直肠癌肺转移中的 32 例。我们还发现,甲基化模式可以预测预后和生存。我们将与癌症生物学密切相关的已知基因的相关 CpG 位点的差异甲基化与表达相关联,结果显示,随着甲基化程度的增加,表达量下降,这是符合预期的。我们在肝细胞癌的小鼠模型中验证了基因表达谱。总之,这些发现证明了甲基化生物标志物在癌症的分子特征描述方面的效用,对诊断和预后具有重要意义。