Physics and Astronomy, Brigham Young University, Provo, Utah, 84604, USA.
Knobles Scientific and Analysis, Austin, Texas 73301, USA.
J Acoust Soc Am. 2020 May;147(5):EL403. doi: 10.1121/10.0001216.
In ocean acoustics, many types of optimizations have been employed to locate acoustic sources and estimate the properties of the seabed. How these tasks can take advantage of recent advances in deep learning remains as open questions, especially due to the lack of labeled field data. In this work, a Convolutional Neural Network (CNN) is used to find seabed type and source range simultaneously from 1 s pressure time series from impulsive sounds. Simulated data are used to train the CNN before application to signals from a single hydrophone signal during the 2017 Seabed Characterization Experiment. The training data includes four seabeds representing deep mud, mud over sand, sandy silt, and sand, and a wide range of source parameters. When applied to measured data, the trained CNN predicts expected seabed types and obtains ranges within 0.5 km when the source-receiver range is greater than 5 km, showing the potential for such algorithms to address these problems.
在海洋声学中,已经采用了许多类型的优化方法来定位声源并估计海底的特性。由于缺乏标记的现场数据,这些任务如何利用深度学习的最新进展仍然是一个悬而未决的问题。在这项工作中,使用卷积神经网络 (CNN) 从脉冲声音的 1 秒压力时间序列中同时找到海底类型和声源范围。在将 CNN 应用于单个水听器信号在 2017 年海底特征实验期间的信号之前,使用模拟数据对其进行训练。训练数据包括代表深泥、泥上砂、砂质淤泥和砂的四个海底,以及广泛的声源参数。当应用于测量数据时,经过训练的 CNN 预测了预期的海底类型,并在源-接收器距离大于 5 公里时获得了 0.5 公里以内的范围,这表明此类算法有解决这些问题的潜力。