Suppr超能文献

通过声学相似性验证深度学习海底分类。

Validating deep learning seabed classification via acoustic similarity.

机构信息

Department of Physics, Hillsdale College, Hillsdale, Michigan 49242, USA.

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84604, USA.

出版信息

JASA Express Lett. 2021 Apr;1(4):040802. doi: 10.1121/10.0004138.

Abstract

While seabed characterization methods have often focused on estimating individual sediment parameters, deep learning suggests a class-based approach focusing on the overall acoustic effect. A deep learning classifier-trained on 1D synthetic waveforms from underwater explosive sources-can distinguish 13 seabed classes. These classes are distinct according to a proposed metric of acoustic similarity. When tested on seabeds not used in training, the classifier obtains 96% accuracy for matching such a seabed to one of the top-3 most acoustically similar classes from the 13 training seabeds. This approach quantifies the performance of a seabed classifier in the face of real seabed variability.

摘要

虽然海底特征描述方法通常侧重于估计单个沉积物参数,但深度学习提示了一种基于类的方法,重点关注整体声学效果。在水下爆炸源的一维合成波形上训练的深度学习分类器,可以区分 13 种海底类别。根据提出的声学相似性度量标准,这些类别是不同的。当在未用于训练的海底上进行测试时,该分类器可以以 96%的准确率将海底与 13 个训练海底中声学最相似的三个类别之一进行匹配。这种方法量化了海底分类器在面对真实海底变化时的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验