School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Microb Cell Fact. 2020 Jun 1;19(1):118. doi: 10.1186/s12934-020-01377-2.
Hydrogenobyrinic acid is a key intermediate of the de-novo aerobic biosynthesis pathway of vitamin B. The introduction of a heterologous de novo vitamin B biosynthesis pathway in Escherichia coli offers an alternative approach for its production. Although E. coli avoids major limitations that currently faced by industrial producers of vitamin B, such as long growth cycles, the insufficient supply of hydrogenobyrinic acid restricts industrial vitamin B production.
By designing combinatorial ribosomal binding site libraries of the hemABCD genes in vivo, we found that their optimal relative translational initiation rates are 10:1:1:5. The transcriptional coordination of the uroporphyrinogen III biosynthetic module was realized by promoter engineering of the hemABCD operon. Knockdown of competitive heme and siroheme biosynthesis pathways by RBS engineering enhanced the hydrogenobyrinic acid titer to 20.54 and 15.85 mg L, respectively. Combined fine-tuning of the heme and siroheme biosynthetic pathways enhanced the hydrogenobyrinic acid titer to 22.57 mg L, representing a remarkable increase of 1356.13% compared with the original strain FH215-HBA.
Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L in E. coli. This lays the foundation for high-yield production of vitamin B in E. coli and will hopefully accelerate its industrial production.
氢卟啉酸是维生素 B 从头生物合成途径的关键中间产物。在大肠杆菌中引入异源从头维生素 B 生物合成途径为其生产提供了一种替代方法。尽管大肠杆菌避免了维生素 B 工业生产目前面临的主要限制,如生长周期长,但氢卟啉酸的供应不足限制了工业维生素 B 的生产。
通过体内设计 hemABCD 基因的组合核糖体结合位点文库,我们发现它们的最佳相对翻译起始率为 10:1:1:5。通过操纵子 hemABCD 启动子工程实现了尿卟啉原 III 生物合成模块的转录协调。通过 RBS 工程敲除竞争血红素和胆色素生物合成途径,分别将氢卟啉酸滴度提高到 20.54 和 15.85 mg/L。通过精细调节血红素和胆色素生物合成途径,将氢卟啉酸滴度提高到 22.57 mg/L,与原始菌株 FH215-HBA 相比,提高了 1356.13%。
通过多层次的代谢工程策略,实现了尿卟啉原 III 生物合成途径的代谢平衡,消除了副产物积累引起的毒性,最终在大肠杆菌中实现了 22.57 mg/L 的高 HBA 滴度。这为大肠杆菌中维生素 B 的高产奠定了基础,并有望加速其工业化生产。