文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种物种特异性的 microRNA 通过靶向 Pinctada fucata 中的 Prisilkin-39 和 ACCBP 的 CDS 区域参与生物矿化。

A species-specific miRNA participates in biomineralization by targeting CDS regions of Prisilkin-39 and ACCBP in Pinctada fucata.

机构信息

The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China.

出版信息

Sci Rep. 2020 Jun 2;10(1):8971. doi: 10.1038/s41598-020-65708-4.


DOI:10.1038/s41598-020-65708-4
PMID:32488043
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7265298/
Abstract

Biomineralization is a sophisticated biological process precisely regulated by multiple molecules and pathways. Accumulating miRNAs have been identified in invertebrates but their functions in biomineralization are poorly studied. Here, an oyster species-specific miRNA, novel_miR_1 was found to regulate biomineralization in Pinctada fucata. Target prediction showed that novel_miR_1 could target Prisilkin-39 and ACCBP by binding to their coding sequences (CDS). Tissue distribution analysis revealed that the expression level of novel_miR_1 was highest in the mantle, which was a key tissue participating in biomineralization. Gain-of-function assay in vivo showed that biomineralization-related genes including Prisilkin-39 and ACCBP were down-regulated and shell inner surfaces of both prismatic and nacreous layer were disrupted after the over-expression of novel_miR_1, indicating its dual roles in biomineralization. Furthermore, the shell notching results indicated that novel_miR_1 was involved in shell regeneration. Dual-luciferase reporter assay in vitro demonstrated that novel_miR_1 directly suppressed Prisilkin-39 and ACCBP genes by binding to the CDS regions. Taken together, these results suggest that novel_miR_1 is a direct negative regulator to Prisilkin-39 and ACCBP and plays an indispensable and important role in biomineralization in both prismatic and nacreous layer of P. fucata.

摘要

生物矿化是一个复杂的生物过程,受到多种分子和途径的精确调控。越来越多的 miRNA 已在无脊椎动物中被鉴定出来,但它们在生物矿化中的功能研究甚少。本研究发现,一种牡蛎物种特异性 miRNA novel_miR_1 可调节菲律宾蛤仔的生物矿化过程。靶基因预测显示,novel_miR_1 可以通过与编码序列(CDS)结合来靶向 Prisilkin-39 和 ACCBP。组织分布分析表明,novel_miR_1 的表达水平在参与生物矿化的关键组织——套膜中最高。体内功能获得实验表明,过表达 novel_miR_1 后,生物矿化相关基因(包括 Prisilkin-39 和 ACCBP)下调,棱柱层和珍珠层的贝壳内表面被破坏,表明其在生物矿化中具有双重作用。此外,贝壳缺口结果表明,novel_miR_1 参与了贝壳再生。体外双荧光素酶报告基因实验表明,novel_miR_1 通过结合 CDS 区域直接抑制 Prisilkin-39 和 ACCBP 基因。综上所述,这些结果表明,novel_miR_1 是 Prisilkin-39 和 ACCBP 的直接负调控因子,在菲律宾蛤仔棱柱层和珍珠层的生物矿化过程中发挥着不可或缺的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/651bcb6b60b0/41598_2020_65708_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/1a46d9898c4c/41598_2020_65708_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/8a0d6d3d2ec9/41598_2020_65708_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/4f42c7fda8d4/41598_2020_65708_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/a3ad06b3dd14/41598_2020_65708_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/651bcb6b60b0/41598_2020_65708_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/1a46d9898c4c/41598_2020_65708_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/8a0d6d3d2ec9/41598_2020_65708_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/4f42c7fda8d4/41598_2020_65708_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/a3ad06b3dd14/41598_2020_65708_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/7265298/651bcb6b60b0/41598_2020_65708_Fig5_HTML.jpg

相似文献

[1]
A species-specific miRNA participates in biomineralization by targeting CDS regions of Prisilkin-39 and ACCBP in Pinctada fucata.

Sci Rep. 2020-6-2

[2]
Identification and Differential Expression of Biomineralization Genes in the Mantle of Pearl Oyster Pinctada fucata.

Mar Biotechnol (NY). 2017-6

[3]
Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata.

J Biol Chem. 2009-4-17

[4]
PfmPif97-like regulated by Pfm-miR-9b-5p participates in shell formation in Pinctada fucata martensii.

PLoS One. 2019-12-12

[5]
PfSMAD1/5 Can Interact with PfSMAD4 to Inhibit PfMSX to Regulate Shell Biomineralization in Pinctada fucata martensii.

Mar Biotechnol (NY). 2020-1-20

[6]
Comprehensive analysis of microRNAs in the mantle central and mantle edge provide insights into shell formation in pearl oyster Pinctada fucata martensii.

Comp Biochem Physiol B Biochem Mol Biol. 2021

[7]
Identification and Characterization of the Lysine-Rich Matrix Protein Family in Pinctada fucata: Indicative of Roles in Shell Formation.

Mar Biotechnol (NY). 2016-12

[8]
Microarray: a global analysis of biomineralization-related gene expression profiles during larval development in the pearl oyster, Pinctada fucata.

BMC Genomics. 2015-4-19

[9]
PU14, a Novel Matrix Protein, Participates in Pearl Oyster, Pinctada Fucata, Shell Formation.

Mar Biotechnol (NY). 2021-4

[10]
cDNA Microarray Analysis Revealing Candidate Biomineralization Genes of the Pearl Oyster, Pinctada fucata martensii.

Mar Biotechnol (NY). 2016-6

引用本文的文献

[1]
The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development.

Int J Mol Sci. 2024-7-12

[2]
The accumulation of modular serine protease mediated by a novel circRNA sponging miRNA increases Aedes aegypti immunity to fungus.

BMC Biol. 2024-1-17

[3]
Identification of Species-Specific MicroRNAs Provides Insights into Dynamic Evolution of MicroRNAs in Plants.

Int J Mol Sci. 2022-11-17

[4]
Integration detection of mercury(ii) and GSH with a fluorescent "on-off-on" switch sensor based on nitrogen, sulfur co-doped carbon dots.

RSC Adv. 2022-1-12

[5]
Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas).

Mar Biotechnol (NY). 2021-6

[6]
Digging into bivalve miRNAomes: between conservation and innovation.

Philos Trans R Soc Lond B Biol Sci. 2021-5-24

[7]
Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach.

RNA Biol. 2021-11

本文引用的文献

[1]
Repaired Shells of the Pearl Oyster Largely Recapitulate Normal Prismatic Layer Growth: A Proteomics Study of Shell Matrix Proteins.

ACS Biomater Sci Eng. 2019-2-11

[2]
Identification and Characterization of microRNAs and Their Predicted Functions in Biomineralization in the Pearl Oyster ().

Biology (Basel). 2019-6-17

[3]
A potential microRNA regulation of immune-related genes in invertebrate haemocytes.

Sci Total Environ. 2017-11-27

[4]
A Novel Matrix Protein, PfY2, Functions as a Crucial Macromolecule during Shell Formation.

Sci Rep. 2017-7-20

[5]
PmRunt regulated by Pm-miR-183 participates in nacre formation possibly through promoting the expression of collagen VI-like and Nacrein in pearl oyster Pinctada martensii.

PLoS One. 2017-6-1

[6]
Identification and Characterization of the Lysine-Rich Matrix Protein Family in Pinctada fucata: Indicative of Roles in Shell Formation.

Mar Biotechnol (NY). 2016-12

[7]
MicroRNAs: Modulators of Tooth Development.

Microrna. 2016

[8]
Computational prediction of candidate miRNAs and their potential functions in biomineralization in pearl oyster Pinctada martensii.

Saudi J Biol Sci. 2016-5

[9]
The miRNA biogenesis in marine bivalves.

PeerJ. 2016-3-7

[10]
High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response.

Sci Rep. 2016-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索