Suppr超能文献

使用传播积分模拟从点源群扩散。

Simulating diffusion from a cluster of point sources using propagation integrals.

机构信息

Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.

出版信息

Eur Biophys J. 2020 Jul;49(5):385-393. doi: 10.1007/s00249-020-01438-9. Epub 2020 Jun 1.

Abstract

A computational methodology to simulate the diffusion of ions from point sources (e.g., ion channels) is described. The outlined approach computes the ion concentration from a cluster of many ion channels at pre-specified locations as a function of time using the theory of propagation integrals. How the channels' open/closed states evolve in time does not need to be known at the start of the simulation, but can be updated on-the-fly as the simulation goes along. The technique uses analytic formulas for the solutions of the diffusion equation for three common geometries: (1) ions diffusing from a membrane (planar symmetry); (2) ions diffusing into a narrow cleft for effective two-dimensional diffusion (cylindrical symmetry); and (3) ions diffusing into open space like the cytosol (spherical symmetry). Because these formulas are exact solutions valid for arbitrarily long timesteps, no spatial or time discretizations are necessary. The only discrete locations are where the ion concentration is computed, and the only discrete timesteps are when the channels' open/closed states are updated. Beyond pure diffusion, the technique is generalized to the Excess Buffer Approximation of ion chelation to give an analytic solution of this approximation of the full reaction/diffusion system. Both the pure diffusion and the diffusion/buffering algorithms scale linearly with the number of channels and the number of ion concentration locations.

摘要

描述了一种从点源(例如离子通道)模拟离子扩散的计算方法。该方法使用传播积分理论,根据预先指定位置的许多离子通道簇,随时间计算离子浓度。在模拟开始时不需要知道通道的打开/关闭状态随时间的演变,但可以在模拟进行时实时更新。该技术针对三种常见几何形状的扩散方程的解使用解析公式:(1)从膜中扩散的离子(平面对称);(2)扩散到狭窄裂隙中的离子用于有效的二维扩散(圆柱对称);和 (3)扩散到细胞质等开放空间的离子(球对称)。由于这些公式是任意长时间步长的精确解,因此不需要空间或时间离散化。唯一的离散位置是计算离子浓度的位置,唯一的离散时间步是更新通道的打开/关闭状态的时间。除了纯扩散,该技术还推广到离子螯合的多余缓冲近似,为全反应/扩散系统的此近似提供了一个解析解。纯扩散和扩散/缓冲算法都与通道数量和离子浓度位置数量呈线性比例关系。

相似文献

1
Simulating diffusion from a cluster of point sources using propagation integrals.
Eur Biophys J. 2020 Jul;49(5):385-393. doi: 10.1007/s00249-020-01438-9. Epub 2020 Jun 1.
2
Self-consistent analytic solution for the current and the access resistance in open ion channels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021925. doi: 10.1103/PhysRevE.80.021925. Epub 2009 Aug 21.
3
Brownian diffusion of ion channels in different membrane patch geometries.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 1):021919. doi: 10.1103/PhysRevE.83.021919. Epub 2011 Feb 28.
5
Simulations of ion channels--watching ions and water move.
Trends Biochem Sci. 2000 Aug;25(8):368-74. doi: 10.1016/s0968-0004(00)01613-3.
6
A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
Biophys J. 2000 Aug;79(2):788-801. doi: 10.1016/S0006-3495(00)76336-3.
7
Fractal properties of ion channels and diffusion.
Math Biosci. 1994 Sep;123(1):77-101. doi: 10.1016/0025-5564(94)90019-1.
8
Validity of the rapid buffering approximation near a point source of calcium ions.
Biophys J. 1996 Jun;70(6):2527-39. doi: 10.1016/S0006-3495(96)79824-7.
9
Calcium dynamics on a stochastic reaction-diffusion lattice model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061905. doi: 10.1103/PhysRevE.74.061905. Epub 2006 Dec 18.
10
Brownian dynamics simulation for modeling ion permeation across bionanotubes.
IEEE Trans Nanobioscience. 2005 Mar;4(1):102-11. doi: 10.1109/tnb.2004.842494.

引用本文的文献

1
Stationary Ca nanodomains in the presence of buffers with two binding sites.
Biophys J. 2021 May 18;120(10):1942-1956. doi: 10.1016/j.bpj.2021.03.015. Epub 2021 Mar 23.
2
Simulating cardiac Ca release units: effects of RyR cluster size and Ca buffers on diastolic Ca leak.
Pflugers Arch. 2021 Mar;473(3):435-446. doi: 10.1007/s00424-021-02539-w. Epub 2021 Feb 20.
3
Efficient Approximations for Stationary Single-Channel Ca Nanodomains across Length Scales.
Biophys J. 2020 Sep 15;119(6):1239-1254. doi: 10.1016/j.bpj.2020.06.038. Epub 2020 Aug 14.

本文引用的文献

1
Recruiting RyRs to Open in a Ca Release Unit: Single-RyR Gating Properties Make RyR Group Dynamics.
Biophys J. 2020 Jan 7;118(1):232-242. doi: 10.1016/j.bpj.2019.11.021. Epub 2019 Nov 23.
2
Padé Approximation of a Stationary Single-Channel Ca Nanodomain.
Biophys J. 2016 Nov 1;111(9):2062-2074. doi: 10.1016/j.bpj.2016.09.019.
3
Algorithm for the Time-Propagation of the Radial Diffusion Equation Based on a Gaussian Quadrature.
PLoS One. 2015 Jul 24;10(7):e0132273. doi: 10.1371/journal.pone.0132273. eCollection 2015.
4
Drift-diffusion simulation of the ephaptic effect in the triad synapse of the retina.
J Comput Neurosci. 2015 Feb;38(1):129-42. doi: 10.1007/s10827-014-0531-7. Epub 2014 Sep 28.
5
Ephaptic coupling of cortical neurons.
Nat Neurosci. 2011 Feb;14(2):217-23. doi: 10.1038/nn.2727. Epub 2011 Jan 16.
6
Quasi-steady approximation for ion channel currents.
Biophys J. 2007 Oct 15;93(8):2597-608. doi: 10.1529/biophysj.107.104299. Epub 2007 Jun 22.
7
A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.
Biophys J. 2004 Nov;87(5):3351-71. doi: 10.1529/biophysj.104.047449. Epub 2004 Sep 3.
8
Usefulness and limitations of linear approximations to the understanding of Ca++ signals.
Cell Calcium. 1998 Nov-Dec;24(5-6):345-57. doi: 10.1016/s0143-4160(98)90058-6.
9
Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+.
Biophys J. 1994 Jun;66(6):1879-86. doi: 10.1016/S0006-3495(94)80981-6.
10
Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations.
Biophys J. 1994 Jul;67(1):447-56. doi: 10.1016/S0006-3495(94)80500-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验