Xu Pin, Chen Peng-Yu, Xu Hai-Chao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
Angew Chem Int Ed Engl. 2020 Aug 17;59(34):14275-14280. doi: 10.1002/anie.202005724. Epub 2020 Jul 9.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp )-H donors through H evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp )-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl from Cl . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.
杂芳烃是许多生物活性化合物和功能材料中存在的结构单元。杂芳烃与脂肪族C-H键的脱氢交叉偶联反应可直接从易得的原料制备功能化杂芳烃。已有的方法是在加热或光照条件下使用化学计量的化学氧化剂。通过将电化学和光化学相结合,我们实现了杂芳烃与C(sp³)-H供体通过析氢进行高效的光电化学脱氢交叉偶联反应,无需添加金属催化剂或化学氧化剂。从机理上讲,C(sp³)-H供体通过与氯原子进行氢原子转移转化为亲核碳自由基,氯原子是由阳极产生的Cl⁻经光照射产生的。然后碳自由基对杂芳烃进行自由基取代反应,得到烷基化杂芳烃产物。