Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States.
Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
J Am Chem Soc. 2020 Jul 8;142(27):11804-11817. doi: 10.1021/jacs.0c03085. Epub 2020 Jun 24.
High-valent nonheme Fe-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of Fe-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat], which contains phosphinic amido groups. An important structural aspect of [Fepoat(O)] is the inclusion of an auxiliary site capable of binding a Lewis acid (LA); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LA s can interact directly with the oxido ligand in Fe-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.
高价非血红素 Fe-氧物种是生物氧化中的关键中间体,其性质据推测受到蛋白质活性位点中独特微环境的影响。微环境受非共价相互作用(如氢键 (H-bonds) 和静电相互作用)调控;然而,关于这些相互作用如何影响高价金属-氧络合物的关键性质,定量信息却很少。为了解决这一知识空白,我们引入了一系列具有与自然界中相同 S = 2 自旋基态的 Fe-氧络合物,然后系统地研究了非共价相互作用对它们电子、结构和振动性质的影响。提供这些络合物的关键设计特征是新的三足配体 [poat],它含有膦酰胺基。[Fepoat(O)] 的一个重要结构方面是包含一个能够结合路易斯酸 (LA) 的辅助位点;我们利用这一独特特征进一步调节 Fe-氧单元周围的静电环境。实验研究证实,H 键和 LA 可以直接与 Fe-氧络合物中的氧配体相互作用,从而削弱 Fe═O 键,并对电子结构产生影响。我们发现,Fe-氧单元中相对较大的振动变化与难以测量的微小结构变化相关,尤其是在蛋白质活性位点内。我们的工作证明了非共价相互作用对金属络合物性质的重要作用,并且在开发有效氧化剂时需要考虑这些相互作用。