Xiong Jin, Reed Christopher, Lavina Barbara, Hu Michael Y, Zhao Jiyong, Alp Esen E, Agapie Theodor, Guo Yisong
Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
Division of Chemistry and Chemical Engineering, California Institute of Technology CA 91125 USA
Chem Sci. 2024 Sep 9;15(39):16222-33. doi: 10.1039/d4sc03396e.
Fe nuclear resonance vibrational spectroscopy (NRVS) has been applied to study a series of tetranuclear iron ([Fe]) clusters based on a multidentate ligand platform (L) anchored by a 1,3,5-triarylbenzene linker and pyrazolate or (butylamino)pyrazolate ligand (PzNH Bu). These clusters bear a terminal Fe(iii)-O/OH moiety at the apical position and three additional iron centers forming the basal positions. The three basal irons are connected with the apical iron center a μ-oxido ligand. Detailed vibrational analysis density functional theory calculations revealed that strong NRVS spectral features below 400 cm can be used as an oxidation state marker for the overall [Fe] cluster core. The terminal Fe(iii)-O/OH stretching frequencies, which were observed in the range of 500-700 cm, can be strongly modulated (energy shifts of 20-40 cm were observed) upon redox events at the three remote basal iron centers of the [Fe] cluster without the change of the terminal Fe(iii) oxidation state and its coordination environment. Therefore, the current study provides a quantitative vibrational analysis of how the remote iron centers within the same iron cluster exert exquisite control of the chemical reactivities and thermodynamic properties of the specific iron site that is responsible for small molecule activation.
铁核共振振动光谱(NRVS)已被用于研究一系列基于由1,3,5-三芳基苯连接体和吡唑酸盐或(丁基氨基)吡唑酸盐配体(PzNHBu)锚定的多齿配体平台(L)的四核铁([Fe])簇。这些簇在顶端位置带有一个末端Fe(iii)-O/OH部分,以及在基部位置形成的另外三个铁中心。三个基部铁通过一个μ-氧化配体与顶端铁中心相连。详细的振动分析和密度泛函理论计算表明,低于400 cm的强NRVS光谱特征可作为整个[Fe]簇核心的氧化态标记。在500 - 700 cm范围内观察到的末端Fe(iii)-O/OH伸缩频率,在[Fe]簇的三个远程基部铁中心发生氧化还原事件时,可被强烈调制(观察到20 - 40 cm的能量位移),而末端Fe(iii)的氧化态及其配位环境不变。因此,当前的研究提供了一种定量振动分析,以说明同一铁簇内的远程铁中心如何对负责小分子活化的特定铁位点的化学反应性和热力学性质进行精确控制。