Nambiar Deepti M, Kumari Juhi, Arya Gulab C, Singh Amarjeet K, Bisht Naveen C
National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India.
Department of Genetics, CGMCP, University of Delhi South Campus, New Delhi, 110021 India.
Plant Methods. 2020 May 24;16:75. doi: 10.1186/s13007-020-00618-0. eCollection 2020.
Glucosinolates are an important class of secondary metabolites characteristic to the order Brassicales. They are known to play a major role in plant defense and from the human perspective, can be anticarcinogenic or antinutritive. GTRs are plasma-membrane localized high affinity glucosinolate transporters, which are important components of the source (leaf) to sink (seed) translocation of intact glucosinolates in members of Brassicaceae family. GTRs are identified as major candidates for crop improvement, thus dictating a need for their functional characterization. However, currently there are limitations in availability of heterologous assay systems for functional characterization of plant secondary metabolite transporters. To date, the animal-based oocyte system is the best established heterologous system for functional characterization of these transporters. Inherent biochemical and physiological attributes unique to the plant membranes necessitate the need for developing plant-based transporters assay systems as well.
In this study, mediated transformation was used to develop expressing cotton cell lines (CCL-1) for functional characterization of the high affinity glucosinolate transporters, AtGTR1 and AtGTR2. Following sub-cellular localization of AtGTRs, we standardized the glucosinolate uptake assays using cell suspension cultures of expressing CCL-1 its requirement of pH, salt, and time based glucosinolate uptake. Using the GTR expressing CCL-1, we subsequently performed kinetic analysis of AtGTR1 and AtGTR2 for different glucosinolate substrates, sinigrin, gluconapin and sinalbin.
Several clones expressing each of and were obtained showing high level of expression and were maintained through regular sub-culturing. Both AtGTR1 and AtGTR2 are predominantly plasma-localized proteins when overexpressed in CCL-1 cells. Uptake assays were standardized, suggesting that glucosinolate uptake of GTR expressing CCL-1 is robust within the physiological pH range 5-6, and at lower concentration of nitrate salts. GTR expressing CCL-1 cells show increasing glucosinolate accumulation in time course experiment. Kinetic studies over a wide glucosinolate concentrations (10-800 µM) revealed that our novel assay system displayed robust GTR-mediated uptake of different glucosinolates and unambiguously helps elucidate the saturable kinetics of GTRs. Our system confirms the high affinity of AtGTRs for both aliphatic and aromatic glucosinolates.
The transporter assay system described in this study holds potential for studying sub-functionalization amongst homologs present across Brassicaceae family. The fast growing CCL-1 cells, confer the benefits of an in vitro system for quick assays and is plant based thus enabling optimal expression without sequence modifications. The efficient functioning of the GTR transporters in the heterologous CCL-1 opens the possibility of using this plant cell suspension system for functional characterization of other metabolite transporters.
硫代葡萄糖苷是十字花目植物特有的一类重要次生代谢产物。已知它们在植物防御中起主要作用,从人类角度来看,既具有抗癌作用,也可能具有抗营养作用。GTRs是定位于质膜的高亲和力硫代葡萄糖苷转运蛋白,是十字花科植物中完整硫代葡萄糖苷从源(叶)到库(种子)转运的重要组成部分。GTRs被认为是作物改良的主要候选对象,因此需要对其进行功能表征。然而,目前用于植物次生代谢物转运蛋白功能表征的异源检测系统有限。迄今为止,基于动物的卵母细胞系统是用于这些转运蛋白功能表征的最成熟的异源系统。植物膜特有的内在生化和生理特性也使得开发基于植物的转运蛋白检测系统成为必要。
在本研究中,采用介导转化法来培育表达AtGTR1和AtGTR2这两种高亲和力硫代葡萄糖苷转运蛋白的棉花细胞系(CCL-1)用于功能表征。在确定AtGTRs的亚细胞定位后,我们使用表达AtGTRs的CCL-1细胞悬浮培养物对硫代葡萄糖苷摄取试验进行了标准化,确定了其对pH、盐以及基于时间的硫代葡萄糖苷摄取的要求。利用表达GTR的CCL-1,我们随后对AtGTR1和AtGTR2针对不同硫代葡萄糖苷底物(黑芥子硫苷、葡糖芥苷和白芥子硫苷)进行了动力学分析。
获得了分别表达AtGTR1和AtGTR2的多个克隆,这些克隆显示出高水平的表达,并通过定期传代得以维持。当在CCL-1细胞中过表达时,AtGTR1和AtGTR2均主要是定位于质膜的蛋白。摄取试验得以标准化,表明表达GTR的CCL-1在生理pH范围5 - 6以及较低硝酸盐浓度下对硫代葡萄糖苷的摄取能力较强。在时间进程实验中,表达GTR的CCL-1细胞显示硫代葡萄糖苷积累增加。在较宽的硫代葡萄糖苷浓度范围(10 - 800 μM)内进行的动力学研究表明,我们的新型检测系统显示出GTR介导的对不同硫代葡萄糖苷的有效摄取,并且明确有助于阐明GTRs的饱和动力学。我们的系统证实了AtGTRs对脂肪族和芳香族硫代葡萄糖苷均具有高亲和力。
本研究中描述的转运蛋白检测系统具有研究十字花科植物中存在的AtGTR同源物之间亚功能化的潜力。快速生长的CCL-1细胞具有体外系统的优势,便于快速检测,并且基于植物,因此无需序列修饰就能实现最佳表达。GTR转运蛋白在异源CCL-1中的有效功能发挥为使用这种植物细胞悬浮系统对其他代谢物转运蛋白进行功能表征提供了可能性。