Suppr超能文献

使用深度卷积神经网络和强化学习的肺脏微分同胚配准

Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.

作者信息

Onieva Jorge Onieva, Marti-Fuster Berta, de la Puente María Pedrero, José Estépar Raúl San

机构信息

Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Image Anal Mov Organ Breast Thorac Images (2018). 2018 Sep;11040:284-294. doi: 10.1007/978-3-030-00946-5_28. Epub 2018 Sep 12.

Abstract

Image registration is a well-known problem in the field of medical imaging. In this paper, we focus on the registration of chest inspiratory and expiratory computed tomography (CT) scans from the same patient. Our method recovers the diffeomorphic elastic displacement vector field (DVF) by jointly regressing the direct and the inverse transformation. Our architecture is based on the RegNet network but we implement a reinforced learning strategy that can accommodate a large training dataset. Our results show that our method performs with a lower estimation error for the same number of epochs than the RegNet approach.

摘要

图像配准是医学成像领域一个广为人知的问题。在本文中,我们专注于同一患者的胸部吸气和呼气计算机断层扫描(CT)的配准。我们的方法通过联合回归正向和反向变换来恢复微分同胚弹性位移矢量场(DVF)。我们的架构基于RegNet网络,但我们实施了一种强化学习策略,该策略可以适应大型训练数据集。我们的结果表明,在相同的训练轮数下,我们的方法比RegNet方法具有更低的估计误差。

相似文献

1
Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning.使用深度卷积神经网络和强化学习的肺脏微分同胚配准
Image Anal Mov Organ Breast Thorac Images (2018). 2018 Sep;11040:284-294. doi: 10.1007/978-3-030-00946-5_28. Epub 2018 Sep 12.

引用本文的文献

1
Artificial general intelligence for radiation oncology.用于放射肿瘤学的通用人工智能。
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100045. Epub 2023 Nov 24.
2
A review of deep learning-based deformable medical image registration.基于深度学习的可变形医学图像配准综述。
Front Oncol. 2022 Dec 7;12:1047215. doi: 10.3389/fonc.2022.1047215. eCollection 2022.
3
Artificial Intelligence in Radiation Therapy.放射治疗中的人工智能
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):158-181. doi: 10.1109/TRPMS.2021.3107454. Epub 2021 Aug 24.
5
Artificial intelligence in functional imaging of the lung.人工智能在肺部功能成像中的应用。
Br J Radiol. 2022 Apr 1;95(1132):20210527. doi: 10.1259/bjr.20210527. Epub 2021 Dec 10.

本文引用的文献

1
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
2
A CNN Regression Approach for Real-Time 2D/3D Registration.一种用于实时 2D/3D 配准的 CNN 回归方法。
IEEE Trans Med Imaging. 2016 May;35(5):1352-1363. doi: 10.1109/TMI.2016.2521800. Epub 2016 Jan 26.
4
Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge.胸部 CT 配准方法评估:EMPIRE10 挑战赛。
IEEE Trans Med Imaging. 2011 Nov;30(11):1901-20. doi: 10.1109/TMI.2011.2158349. Epub 2011 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验