Suppr超能文献

一种用于实时 2D/3D 配准的 CNN 回归方法。

A CNN Regression Approach for Real-Time 2D/3D Registration.

出版信息

IEEE Trans Med Imaging. 2016 May;35(5):1352-1363. doi: 10.1109/TMI.2016.2521800. Epub 2016 Jan 26.

Abstract

In this paper, we present a Convolutional Neural Network (CNN) regression approach to address the two major limitations of existing intensity-based 2-D/3-D registration technology: 1) slow computation and 2) small capture range. Different from optimization-based methods, which iteratively optimize the transformation parameters over a scalar-valued metric function representing the quality of the registration, the proposed method exploits the information embedded in the appearances of the digitally reconstructed radiograph and X-ray images, and employs CNN regressors to directly estimate the transformation parameters. An automatic feature extraction step is introduced to calculate 3-D pose-indexed features that are sensitive to the variables to be regressed while robust to other factors. The CNN regressors are then trained for local zones and applied in a hierarchical manner to break down the complex regression task into multiple simpler sub-tasks that can be learned separately. Weight sharing is furthermore employed in the CNN regression model to reduce the memory footprint. The proposed approach has been quantitatively evaluated on 3 potential clinical applications, demonstrating its significant advantage in providing highly accurate real-time 2-D/3-D registration with a significantly enlarged capture range when compared to intensity-based methods.

摘要

在本文中,我们提出了一种卷积神经网络(CNN)回归方法,以解决现有基于强度的 2D/3D 配准技术的两个主要局限性:1)计算速度慢,2)捕获范围小。与基于优化的方法不同,后者通过迭代优化表示配准质量的标量值函数上的变换参数,所提出的方法利用数字重建射线照片和 X 射线图像中嵌入的信息,并使用 CNN 回归器直接估计变换参数。引入了自动特征提取步骤来计算 3D 位姿索引特征,这些特征对要回归的变量敏感,同时对其他因素具有鲁棒性。然后,针对局部区域对 CNN 回归器进行训练,并以分层的方式应用,将复杂的回归任务分解为多个可以单独学习的更简单的子任务。此外,在 CNN 回归模型中还采用了权重共享,以减少内存占用。该方法已经在 3 个潜在的临床应用中进行了定量评估,与基于强度的方法相比,该方法在提供高精度实时 2D/3D 配准时具有显著优势,并且捕获范围显著扩大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验