Szymoniak Paulina, Pauw Brian Richard, Qu Xintong, Schönhals Andreas
Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
Soft Matter. 2020 Jun 21;16(23):5406-5421. doi: 10.1039/d0sm00744g. Epub 2020 Jun 3.
The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/boehmite nanocomposite with different particle concentrations are considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry and temperature modulated calorimetry, and dielectric spectroscopy was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature, for an epoxy-based composite, a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking densities, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for the nanocomposites, the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees, the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. By taking the sample with the highest number of mobile segments as a reference state, it was possible to estimate the amount of RAF.
研究了纳米颗粒对基于酸酐固化的二缩水甘油醚双酚A/勃姆石纳米复合材料的热固性材料的复杂影响,该复合材料具有不同的颗粒浓度。采用X射线散射、量热法(包括快速扫描量热法和温度调制量热法)以及介电谱相结合的方法来研究纳米复合材料的结构、玻璃化动力学和分子动力学。在文献中首次对基于环氧树脂的复合材料进行了X射线数据的详细分析。此外,发现未填充的聚合物本质上是不均匀的,表现出具有不同交联密度的区域,这由两个单独的动态玻璃化转变表明。玻璃化转变温度随纳米颗粒浓度的增加而降低,这是由于交联密度的变化所致。此外,一方面,对于纳米复合材料,由于交联密度的改变,在低纳米颗粒浓度下,纳米填料的加入增加了可移动链段的数量。另一方面,对于较高的负载量,可移动链段的数量减少,这是由于形成了固定的界面相(RAF)。链段动力学的同时移动和固定无法明确区分。以具有最多可移动链段数量的样品作为参考状态,可以估计RAF的量。