Omar Hassan, Smales Glen J, Henning Sven, Li Zhi, Wang De-Yi, Schönhals Andreas, Szymoniak Paulina
Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen (IMWS), Walter-Hülse-Str. 1, 06120 Halle, Germany.
Polymers (Basel). 2021 May 18;13(10):1634. doi: 10.3390/polym13101634.
Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH) nanodots) was considered. For Ep/HNT, the glass transition temperature () was decreased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler-matrix interactions leading to higher values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities.
由于具有优异的机械和热性能,环氧纳米复合材料是工业应用(即航空航天、船舶和汽车工业)中很有前景的材料。在此,中空埃洛石纳米管(HNT)对环氧基体(Ep)的影响是该研究的重点。使用X射线散射、量热法(差示扫描量热法(DSC)和快速扫描量热法(FSC))以及介电谱相结合的方法研究了纳米复合材料的结构和分子流动性。此外,还考虑了HNT表面改性(聚多巴胺(PDA)和Fe(OH)纳米点)的影响。对于Ep/HNT,由于与纳米颗粒相关的交联密度降低,玻璃化转变温度()降低。对于改性体系Ep/m-HNT,表面改性导致填料与基体之间的相互作用增强,在某些情况下导致的值高于纯环氧树脂。对于Ep/m-HNT,纳米颗粒与基体之间形成的界面量在5%至15%之间。通过宽带介电谱(BDS)测量,检测到局部波动为β弛豫和γ弛豫,与苯环的旋转波动和未反应组分的局部重新取向有关。量热法和介电谱的结合揭示了基体的动态和结构不均匀性,这在两个体系中都通过两种玻璃态动力学得到证实,这与具有不同交联密度的区域有关。