Premont Richard T, Stamler Jonathan S
Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio.
Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
Physiology (Bethesda). 2020 Jul 1;35(4):234-243. doi: 10.1152/physiol.00040.2019.
The supply of oxygen to tissues is controlled by microcirculatory blood flow. One of the more surprising discoveries in cardiovascular physiology is the critical dependence of microcirculatory blood flow on a single conserved cysteine within the β-subunit (βCys93) of hemoglobin (Hb). βCys93 is the primary site of Hb -nitrosylation [i.e., -nitrosothiol (SNO) formation to produce -nitrosohemoglobin (SNO-Hb)]. Notably, -nitrosylation of βCys93 by NO is favored in the oxygenated conformation of Hb, and deoxygenated Hb releases SNO from βCys93. Since SNOs are vasodilatory, this mechanism provides a physiological basis for how tissue hypoxia increases microcirculatory blood flow (hypoxic autoregulation of blood flow). Mice expressing βCys93A mutant Hb (C93A) have been applied to understand the role of βCys93, and RBCs more generally, in cardiovascular physiology. Notably, C93A mice are unable to effect hypoxic autoregulation of blood flow and exhibit widespread tissue hypoxia. Moreover, reactive hyperemia (augmentation of blood flow following transient ischemia) is markedly impaired. C93A mice display multiple compensations to preserve RBC vasodilation and overcome tissue hypoxia, including shifting SNOs to other thiols on adult and fetal Hbs and elsewhere in RBCs, and growing new blood vessels. However, compensatory vasodilation in C93A mice is uncoupled from hypoxic control, both peripherally (e.g., predisposing to ischemic injury) and centrally (e.g., impairing hypoxic drive to breathe). Altogether, physiological studies utilizing C93A mice are confirming the allosterically controlled role of SNO-Hb in microvascular blood flow, uncovering essential roles for RBC-mediated vasodilation in cardiovascular physiology and revealing new roles for RBCs in cardiovascular disease.
组织的氧气供应由微循环血流量控制。心血管生理学中一个较为惊人的发现是,微循环血流量严重依赖于血红蛋白(Hb)β亚基内一个保守的半胱氨酸(βCys93)。βCys93是Hb亚硝基化的主要位点[即形成亚硝基硫醇(SNO)以产生亚硝基血红蛋白(SNO-Hb)]。值得注意的是,NO对βCys93的亚硝基化在Hb的氧合构象中更易发生,而脱氧Hb会从βCys93释放SNO。由于SNO具有血管舒张作用,这一机制为组织缺氧如何增加微循环血流量(血流的缺氧自动调节)提供了生理基础。表达βCys93A突变型Hb(C93A)的小鼠已被用于了解βCys93以及更广泛的红细胞在心血管生理学中的作用。值得注意的是,C93A小鼠无法实现血流的缺氧自动调节,并表现出广泛的组织缺氧。此外,反应性充血(短暂缺血后血流量增加)也明显受损。C93A小鼠表现出多种代偿机制以维持红细胞血管舒张并克服组织缺氧,包括将SNO转移至成年和胎儿Hb以及红细胞其他部位的其他硫醇上,以及生成新血管。然而,C93A小鼠的代偿性血管舒张与缺氧控制解偶联,在外周(例如易发生缺血性损伤)和中枢(例如损害呼吸的缺氧驱动)均如此。总之,利用C93A小鼠进行的生理学研究证实了SNO-Hb在微血管血流中的变构控制作用,揭示了红细胞介导的血管舒张在心血管生理学中的重要作用,并揭示了红细胞在心血管疾病中的新作用。