Suppr超能文献

条件安全裕度用于不太保守的局部峰值 SAR 评估:一种概率方法。

Conditional safety margins for less conservative peak local SAR assessment: A probabilistic approach.

机构信息

Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.

Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Magn Reson Med. 2020 Dec;84(6):3379-3395. doi: 10.1002/mrm.28335. Epub 2020 Jun 3.

Abstract

PURPOSE

The introduction of a linear safety factor to address peak local specific absorption rate (pSAR ) uncertainties (eg, intersubject variation, modeling inaccuracies) bears one considerable drawback: It often results in over-conservative scanning constraints. We present a more efficient approach to define a variable safety margin based on the conditional probability density function of the effectively obtained pSAR value, given the estimated pSAR value.

METHODS

The conditional probability density function can be estimated from previously simulated data. A representative set of true and estimated pSAR samples was generated by means of our database of 23 subject-specific models with an 8-fractionated dipole array for prostate imaging at 7 T. The conditional probability density function was calculated for each possible estimated pSAR value and used to determine the corresponding safety margin with an arbitrary low probability of underestimation. This approach was applied to five state-of-the-art local SAR estimation methods, namely: (1) using just the generic body model "Duke"; (2) using our model library to assess the maximum pSAR value over all models; (3) using the most representative "local SAR model"; (4) using the five most representative local SAR models; and (5) using a recently developed deep learning-based method.

RESULTS

Compared with the more conventional safety factor, the conditional safety-margin approach results in lower (up to 30%) mean overestimation for all investigated local SAR estimation methods.

CONCLUSION

The proposed probabilistic approach for pSAR correction allows more accurate local SAR assessment with much lower overestimation, while a predefined level of underestimation is accepted (eg, 0.1%).

摘要

目的

引入线性安全系数来解决峰值局部比吸收率(pSAR)不确定性(例如,个体间变异、建模不准确)的问题,但这带来了一个相当大的缺点:它通常导致过度保守的扫描约束。我们提出了一种更有效的方法,根据给定估计的 pSAR 值时有效获得的 pSAR 值的条件概率密度函数,定义可变安全裕度。

方法

条件概率密度函数可以从以前的模拟数据中估计。通过使用我们的 23 个特定于主题的模型数据库,该数据库具有用于在 7 T 处进行前列腺成像的 8 个分段偶极子阵列,生成了一组真实和估计的 pSAR 值的代表性样本。为每个可能的估计 pSAR 值计算条件概率密度函数,并使用该函数来确定具有任意低低估概率的相应安全裕度。该方法应用于五种最先进的局部 SAR 估计方法,分别是:(1)仅使用通用体模型“Duke”;(2)使用我们的模型库来评估所有模型中的最大 pSAR 值;(3)使用最具代表性的“局部 SAR 模型”;(4)使用五个最具代表性的局部 SAR 模型;(5)使用最近开发的基于深度学习的方法。

结果

与更传统的安全系数相比,条件安全裕度方法导致所有研究的局部 SAR 估计方法的平均高估率降低(最高达 30%)。

结论

所提出的用于 pSAR 校正的概率方法允许更准确的局部 SAR 评估,同时接受更低的高估(例如,0.1%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f5b/7540599/7ae9501b5908/MRM-84-3379-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验