Suppr超能文献

感度分析与安全。

SAR Simulations & Safety.

机构信息

Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany.

出版信息

Neuroimage. 2018 Mar;168:33-58. doi: 10.1016/j.neuroimage.2017.03.035. Epub 2017 Mar 20.

Abstract

At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.

摘要

在超高场强下,与低场系统相比,射频(RF)安全评估呈现出一些新的挑战。多通道 RF 发射线圈与并行传输技术相结合,在组织中产生随时间变化和空间变化的功率损耗密度。此外,在超高场系统中,由于从准静态到电磁场状态的转变,局部场效应可能更加明显。因此,需要局部 RF 场信息来进行可靠的 RF 安全评估以及在 MR 检查期间监测 RF 暴露。使用具有解剖体模型的现实暴露场景进行射频和热数值模拟是目前获得磁和电场分布以及组织温度所需局部信息的唯一实用方法。本文回顾了超高场系统中 RF 场分布的安全规定和基本特征。突出了用于计算 RF 场的数值方法以及分析包括解剖体模型的现实多通道 RF 暴露场景的典型要求。近年来,由于预计由于温度与组织损伤直接相关,因此更准确的安全评估,局部组织温度的计算变得越来越重要。关于热模拟,讨论了生物传热模型和考虑人体对 RF 暴露的生理反应的方法。此外,还提出了合适的方法来用测量值验证计算的 RF 和热结果。最后,讨论了广义基于仿真的比吸收率(SAR)矩阵模型的概念。这些模型可以被纳入多通道 MR 系统中的局部 SAR 监测中,并允许在局部 SAR 约束下设计 RF 脉冲。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验