Suppr超能文献

硅通过激活抗氧化系统、热激蛋白和内源性植物激素诱导番茄耐热性。

Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones.

机构信息

Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.

School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea.

出版信息

BMC Plant Biol. 2020 Jun 3;20(1):248. doi: 10.1186/s12870-020-02456-7.

Abstract

BACKGROUND

Abiotic stresses (e.g., heat or limited water and nutrient availability) limit crop production worldwide. With the progression of climate change, the severity and variation of these stresses are expected to increase. Exogenous silicon (Si) has shown beneficial effects on plant growth; however, its role in combating the negative effects of heat stress and their underlying molecular dynamics are not fully understood.

RESULTS

Exogenous Si significantly mitigated the adverse impact of heat stress by improving tomato plant biomass, photosynthetic pigments, and relative water content. Si induced stress tolerance by decreasing the concentrations of superoxide anions and malondialdehyde, as well as mitigating oxidative stress by increasing the gene expression for antioxidant enzymes (peroxidases, catalases, ascorbate peroxidases, superoxide dismutases, and glutathione reductases) under stress conditions. This was attributed to increased Si uptake in the shoots via the upregulation of low silicon (SlLsi1 and SlLsi2) gene expression under heat stress. Interestingly, Si stimulated the expression and transcript accumulation of heat shock proteins by upregulating heat transcription factors (Hsfs) such as SlHsfA1a-b, SlHsfA2-A3, and SlHsfA7 in tomato plants under heat stress. On the other hand, defense and stress signaling-related endogenous phytohormones (salicylic acid [SA]/abscisic acid [ABA]) exhibited a decrease in their concentration and biosynthesis following Si application. Additionally, the mRNA and gene expression levels for SA (SlR1b1, SlPR-P2, SlICS, and SlPAL) and ABA (SlNCEDI) were downregulated after exposure to stress conditions.

CONCLUSION

Si treatment resulted in greater tolerance to abiotic stress conditions, exhibiting higher plant growth dynamics and molecular physiology by regulating the antioxidant defense system, SA/ABA signaling, and Hsfs during heat stress.

摘要

背景

非生物胁迫(例如热胁迫或有限的水和养分供应)限制了全球作物的产量。随着气候变化的发展,这些胁迫的严重程度和变化预计将会增加。外源硅(Si)已被证明对植物生长有益;然而,其在抵御热胁迫的负面影响及其潜在的分子动力学方面的作用尚未完全阐明。

结果

外源 Si 通过提高番茄植株生物量、光合色素和相对含水量,显著减轻了热胁迫的不利影响。Si 通过降低超氧阴离子和丙二醛的浓度,以及通过增加胁迫条件下抗氧化酶(过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶、超氧化物歧化酶和谷胱甘肽还原酶)的基因表达来缓解氧化应激,从而诱导胁迫耐受性。这归因于在热胁迫下,通过上调低硅(SlLsi1 和 SlLsi2)基因表达,增加了地上部 Si 的吸收。有趣的是,Si 通过上调热转录因子(如 SlHsfA1a-b、SlHsfA2-A3 和 SlHsfA7),刺激了热胁迫下番茄植物中热休克蛋白的表达和转录积累。另一方面,防御和应激信号相关的内源植物激素(水杨酸[SA]/脱落酸[ABA])在 Si 处理后其浓度和生物合成均降低。此外,在暴露于胁迫条件下,SA(SlR1b1、SlPR-P2、SlICS 和 SlPAL)和 ABA(SlNCEDI)的 mRNA 和基因表达水平下调。

结论

Si 处理导致对非生物胁迫条件的更高耐受性,通过调节抗氧化防御系统、SA/ABA 信号转导和 Hsfs,表现出更高的植物生长动态和分子生理学特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64cb/7268409/75d7d44568cf/12870_2020_2456_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验