Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Psychol Med. 2021 Dec;51(16):2895-2903. doi: 10.1017/S0033291720001579. Epub 2020 Jun 4.
.
Depression is highly prevalent and marked by a chronic and recurrent course. Despite being a major cause of disability worldwide, little is known regarding the determinants of its heterogeneous course. Machine learning techniques present an opportunity to develop tools to predict diagnosis and prognosis at an individual level.
We examined baseline (2008-2010) and follow-up (2012-2014) data of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a large occupational cohort study. We implemented an elastic net regularization analysis with a 10-fold cross-validation procedure using socioeconomic and clinical factors as predictors to distinguish at follow-up: (1) depressed from non-depressed participants, (2) participants with incident depression from those who did not develop depression, and (3) participants with chronic (persistent or recurrent) depression from those without depression.
We assessed 15 105 and 13 922 participants at waves 1 and 2, respectively. The elastic net regularization model distinguished outcome levels in the test dataset with an area under the curve of 0.79 (95% CI 0.76-0.82), 0.71 (95% CI 0.66-0.77), 0.90 (95% CI 0.86-0.95) for analyses 1, 2, and 3, respectively.
Diagnosis and prognosis related to depression can be predicted at an individual subject level by integrating low-cost variables, such as demographic and clinical data. Future studies should assess longer follow-up periods and combine biological predictors, such as genetics and blood biomarkers, to build more accurate tools to predict depression course.
.
抑郁症的发病率很高,且具有慢性和复发性病程。尽管抑郁症是全球范围内导致残疾的主要原因之一,但人们对其异质病程的决定因素知之甚少。机器学习技术为开发用于预测个体诊断和预后的工具提供了机会。
我们研究了巴西成人健康纵向研究(ELSA-Brasil)的基线(2008-2010 年)和随访(2012-2014 年)数据,这是一项大型职业队列研究。我们使用社会经济和临床因素作为预测因子,实施了弹性网络正则化分析,并进行了 10 折交叉验证程序,以区分随访时的结果:(1)抑郁参与者与非抑郁参与者,(2)出现抑郁的参与者与未发展为抑郁的参与者,以及(3)患有慢性(持续或复发性)抑郁症的参与者与无抑郁症的参与者。
我们分别在第 1 波和第 2 波评估了 15105 名和 13922 名参与者。弹性网络正则化模型在测试数据集上区分了结局水平,曲线下面积分别为 0.79(95%CI 0.76-0.82)、0.71(95%CI 0.66-0.77)和 0.90(95%CI 0.86-0.95),用于分析 1、2 和 3。
通过整合低成本变量,如人口统计学和临床数据,可以在个体主体水平预测与抑郁相关的诊断和预后。未来的研究应评估更长的随访期,并结合生物预测因子,如遗传学和血液生物标志物,以构建更准确的预测抑郁病程的工具。