Franklin Daniel, He Ziqian, Mastranzo Ortega Pamela, Safaei Alireza, Cencillo-Abad Pablo, Wu Shin-Tson, Chanda Debashis
Department of Physics, University of Central Florida, Orlando, FL 32816.
NanoScience Technology Center, University of Central Florida, Orlando, FL 32826.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13350-13358. doi: 10.1073/pnas.2001435117. Epub 2020 Jun 3.
Nanostructured plasmonic materials can lead to the extremely compact pixels and color filters needed for next-generation displays by interacting with light at fundamentally small length scales. However, previous demonstrations suffer from severe angle sensitivity, lack of saturated color, and absence of black/gray states and/or are impractical to integrate with actively addressed electronics. Here, we report a vivid self-assembled nanostructured system which overcomes these challenges via the multidimensional hybridization of plasmonic resonances. By exploiting the thin-film growth mechanisms of aluminum during ultrahigh vacuum physical vapor deposition, dense arrays of particles are created in near-field proximity to a mirror. The sub-10-nm gaps between adjacent particles and mirror lead to strong multidimensional coupling of localized plasmonic modes, resulting in a singular resonance with negligible angular dispersion and ∼98% absorption of incident light at a desired wavelength. The process is compatible with arbitrarily structured substrates and can produce wafer-scale, diffusive, angle-independent, and flexible plasmonic materials. We then demonstrate the unique capabilities of the strongly coupled plasmonic system via integration with an actively addressed reflective liquid crystal display with control over black states. The hybrid display is readily programmed to display images and video.
纳米结构等离子体材料通过在极小的长度尺度上与光相互作用,可实现下一代显示器所需的极其紧凑的像素和彩色滤光片。然而,先前的演示存在严重的角度敏感性、缺乏饱和颜色以及没有黑/灰状态,并且/或者与主动寻址电子器件集成不切实际。在此,我们报道了一种生动的自组装纳米结构系统,该系统通过等离子体共振的多维杂化克服了这些挑战。通过利用超高真空物理气相沉积过程中铝的薄膜生长机制,在靠近镜子的近场中创建了密集的粒子阵列。相邻粒子与镜子之间小于10纳米的间隙导致局域等离子体模式的强多维耦合,从而产生具有可忽略角度色散的单一共振,并在所需波长处对入射光有~98%的吸收。该过程与任意结构的基板兼容,并且可以生产晶圆级、漫射、角度无关且灵活的等离子体材料。然后,我们通过与具有黑态控制功能的主动寻址反射液晶显示器集成,展示了强耦合等离子体系统的独特能力。这种混合显示器易于编程以显示图像和视频。