Dal Moro Giancarlo
Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
Sci Rep. 2020 Jun 3;10(1):9071. doi: 10.1038/s41598-020-66070-1.
In the last decades, surface wave analysis has become a standard tool for an increasingly large number of geotechnical applications that require the determination of the subsurface shear-wave velocity (V) profile. In the present paper, we investigate the role of a shallow stiff layer on Rayleigh and Love wave propagation. Multi-component synthetic and field data are considered to analyse the vertical (Z) and radial (R) components of Rayleigh waves as well as Love waves (T component). Velocity spectra are analysed according to the Full Velocity Spectrum (FVS) approach together with the Rayleigh-wave Particle Motion (RPM) frequency-offset surface that reveals the actual prograde-retrograde motion of Rayleigh waves. The FVS approach to surface wave analysis reveals particularly powerful in case we intend to reproduce the actual modal energy and when, because of complex mode excitation, the velocity spectra cannot be easily interpreted in terms of modal dispersion curves. The analysis of both synthetic and field data highlights two major facts. On one side, along the T component (Love waves) the presence of a thin shallow stiff layer excites higher modes whose top velocity is controlled by the shear-wave velocity of the deeper layers. On the other side, such a stiff layer does not massively influence the velocity spectra of the Z and R components (Rayleigh waves) and the related RPM: irrespective of the presence of the superficial stiff layer, RPM clearly shows the change from retrograde to prograde due to the V increase in the deep layers. In case a superficial stiff layer is present (this condition is quite common in urbanized areas such as the one of the field dataset here considered), Love waves can be then an interesting tool for an expeditious estimation of the V of the deep layers.
在过去几十年中,面波分析已成为越来越多岩土工程应用的标准工具,这些应用需要确定地下剪切波速度(V)剖面。在本文中,我们研究了浅层硬层对瑞利波和洛夫波传播的作用。考虑多分量合成数据和现场数据,以分析瑞利波的垂直(Z)分量和径向(R)分量以及洛夫波(T分量)。根据全速度谱(FVS)方法以及瑞利波质点运动(RPM)频率偏移面来分析速度谱,该面揭示了瑞利波实际的前进-后退运动。当面波分析采用FVS方法时,如果我们想要再现实际的模态能量,并且由于复杂的模态激发,速度谱难以根据模态频散曲线进行解释,那么这种方法就显得特别强大。对合成数据和现场数据的分析突出了两个主要事实。一方面,沿着T分量(洛夫波),薄的浅层硬层的存在会激发更高阶模态,其顶部速度由深层的剪切波速度控制。另一方面,这样的硬层不会对Z和R分量(瑞利波)的速度谱以及相关的RPM产生重大影响:无论表面硬层是否存在,RPM都清楚地显示出由于深层V的增加而从后退到前进的变化。如果存在表面硬层(这种情况在城市化地区相当常见,比如这里所考虑的现场数据集所在区域),那么洛夫波可以成为快速估算深层V的一个有趣工具。