Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
Cell Res. 2020 Jul;30(7):564-573. doi: 10.1038/s41422-020-0350-5. Epub 2020 Jun 3.
Metabotropic GABA G protein-coupled receptor functions as a mandatory heterodimer of GB1 and GB2 subunits and mediates inhibitory neurotransmission in the central nervous system. Each subunit is composed of the extracellular Venus flytrap (VFT) domain and transmembrane (TM) domain. Here we present cryo-EM structures of full-length human heterodimeric GABA receptor in the antagonist-bound inactive state and in the active state complexed with an agonist and a positive allosteric modulator in the presence of G protein at a resolution range of 2.8-3.0 Å. Our structures reveal that agonist binding stabilizes the closure of GB1 VFT, which in turn triggers a rearrangement of TM interfaces between the two subunits from TM3-TM5/TM3-TM5 in the inactive state to TM6/TM6 in the active state and finally induces the opening of intracellular loop 3 and synergistic shifting of TM3, 4 and 5 helices in GB2 TM domain to accommodate the α5-helix of G. We also observed that the positive allosteric modulator anchors at the dimeric interface of TM domains. These results provide a structural framework for understanding class C GPCR activation and a rational template for allosteric modulator design targeting the dimeric interface of GABA receptor.
代谢型 GABA G 蛋白偶联受体作为 GB1 和 GB2 亚基的必需异源二聚体发挥作用,并介导中枢神经系统中的抑制性神经传递。每个亚基由细胞外 Venus flytrap(VFT)结构域和跨膜(TM)结构域组成。在这里,我们展示了全长人源异源二聚体 GABA 受体在拮抗剂结合的非活性状态以及与激动剂和正变构调节剂复合物的活性状态下的冷冻电镜结构,分辨率范围为 2.8-3.0Å。我们的结构揭示了激动剂结合稳定了 GB1 VFT 的闭合,这反过来又触发了两个亚基之间 TM 界面的重排,从非活性状态下的 TM3-TM5/TM3-TM5 到活性状态下的 TM6/TM6,最后诱导细胞内环 3 的打开和 TM3、4 和 5 螺旋在 GB2 TM 结构域中的协同移位,以容纳 G 的 α5-螺旋。我们还观察到正变构调节剂锚定在 TM 结构域的二聚体界面上。这些结果为理解 C 类 GPCR 激活提供了结构框架,并为针对 GABA 受体二聚体界面的变构调节剂设计提供了合理的模板。