Hastings A
Department of Mathematics, University of California, Davis 95616.
J Theor Biol. 1988 Sep 9;134(1):103-12. doi: 10.1016/s0022-5193(88)80305-9.
I determine expected levels of heterozygosity in two allele multilocus models with mutation, stabilizing selection and drift. In the range 2 to 32 loci, the per locus heterozygosity can depend on the locus number. The per locus heterozygosity for ten loci can be as low as three fourths of the per locus heterozygosity in the limit, as the number of loci gets large. Simulations indicate that this dependence on locus number is not due to the population approaching equilibria at which the mean differs from the optimum, but is due to changes in the substitution rate as a function of the number of loci.
我确定了具有突变、稳定选择和漂变的双等位基因多位点模型中的预期杂合度水平。在2到32个位点的范围内,每个位点的杂合度可能取决于位点数量。当位点数量增加时,十个位点的每个位点杂合度在极限情况下可能低至每个位点杂合度的四分之三。模拟表明,这种对位点数量的依赖性并非由于种群接近均值与最优值不同的平衡状态,而是由于替换率随位点数量的变化而变化。